Tridash Tutorials

Tridash Tutorials

Tridash Tutorials ii
Contents

1 Hello Node 1

1.1 Nodes o 1

1.2 First Application L. e e 2

1.2.1 Building 3

1.2.2 Running The Application e 3

1.3 Inline Node Declarations i e 4

1.4 Two-Way Bindings e e e 5

1.4.1 Example Application L e e e e 5

2 Functional Bindings 6

2.1 Example Application: Adding Numbers L 7

2.1.1 Build Configuration File L 8

2.1.2 Running the Application e 9

2.2 Bindingto Functor Nodes o e e e e 9

3 Conditional Bindings 10

3.1 Case Operator o i e e e e e e e e e 11

3.2 Example 1: Maximum of Two Numbers e 11

3.3 Example 2: Sum Limito oL e 14

34 Improvements e e e e e 16

4 Writing your own Functions 18

4.1 Definition Operator o e e e e e e 18

42 Node self 19

4.3 Optional ATgUMENES o Lt i e e e e e e e e e e e e e 19

4.4 Recursive Meta-Nodes L e e e 21

4.5 Nested Meta-Nodes o e e e e 22

4.6 Local Nodes e 22

477 Referencing Outer Nodes o L e e e e e e e 22

4.8 Fun Example: Simple Meter e e e e e e 23

5 Subnodes 26

5.1 Example: Color Object e e e e e e 27

6 Error Handling with Failure Values 30

6.1 InvalidInput. e 30

6.2 Failure Values e 31

6.3 Handling Failures L e e 31

6.3.1 Cleaning Up L e 32

6.4 Initial Values L 33

6.5 EXEICISE o o e e e 34

Tridash Tutorials

7 Failure Types

7.1 Identifying the cause of Failures e
7.2 Example: Checking Failure type in Adding Numbers Application
7.3 Creating Failure Values e

7.3.1 Example: Positive Numbers Only e
7.4 Proper Failure Types o e e e e e e

8 Target Node Transforms

8.1 Node Attributes e e e
8.2 Attribute target—node e e e e e e e e e e e
8.3 Target-Node for own Meta-Nodes o e e e
9 Contexts
9.1 Explicit CONteXtS o v v i o e
9.2 Handling Failures with Explicit Contexts o it e e
9.3 Improved Error Handling in Adding Numbers i i i it e e e
9.4 ConciSe SYNEAXt it e e e e e e e e e e e e e e e e e

10 Node States
10.1 Stateful Bindings o . e e e e e e e
10.2 Interfacing with JavaScript L e e e e e
10.3 Example: Counter Application e e e
10.4 State TranSitions o L Lo e e e e e e e e e e e
10.5 Example: Alternating Increment Button

10.6 EXEICISES v v o e e e

11 List Processing
11.1 Creating Lists o o L e e
11.2 Higher-Order Meta-Nodes e
11.2.1 Outer Node References
11.2.2 Higher-Order Meta-Nodes in List Processing
11.3 Example: Message List 0 oo e e e

12 Modules And Organization
12.1 Multiple Source Files e e
12.1.1 Building
122 Modules In Depth L e e
12.2.1 Creating Modules e e e e e e
12.2.2 UsingModules o o e e e e e
12.2.3 Importing Nodes o o e e e e e e
12.2.4 Exporting Nodes o o e e e e e

Tridash Tutorials iv

12.2.5 Directly Reference Nodes in Another Module 68
12.3 Adding Modularity to Adding Numbers e e e 68
12.4 InfiX OPerators o v v i i e 70
12.4.1 Precedence and Associativity Basics oL 70
12.4.2 Registering your own infix Operators v it e e e e e e 71
12.4.3 Example: Infix add Operator 0 i i e e e e e e e e e e 71

13 What’s Next? 72

Tridash Tutorials 1/72

This set of tutorials covers the basics of the Tridash programming language.

Prior programming experience is not strictly necessary however is helpful.

Tip
The full source code for these tutorials is available in the tutorials directory of the Tridash source: https:/github.com/alex-gutev/-
tridash/tree/master/tutorials.

1 Hello Node

1.1 Nodes

A Tridash program is made up of a number of components called nodes, which are loosely analogous to variables in other
languages. Each node holds a particular value, referred to as the node’s state, at a given moment in time.

Nodes are created the first time they are referenced, by their identifiers. Node identifiers can consist of any sequence of Unicode
characters excluding whitespace, parenthesis (,), braces {, }, double quotes " and the following special characters: ;, ,, ., #.
A node identifier must consist of at least one non-digit character otherwise it is interpreted as a number.

The following are examples of valid node identifiers:

* name
e full-name
* nodel

* 1lnode

Tip
There are few restrictions on the characters allowed in node identifiers, meaning node identifiers may even contain symbols
such as —, +, =, >, ?, etc.

A node can be bound to another node in which case its value is automatically updated when the value of the node, to which it is
bound, changes.

The —> operator establishes a binding between the node on the left hand side, referred to as the source, and the node on the right
hand side, referred to as the target.

Example

a > b

Important
@ The spaces between the node identifiers and the bind —> operator are mandatory since a—>b is a valid node identifier
and is thus interpreted as a single node.

In this example a binding is established between node a and node b. The result is that when the value of a changes, the value of
b is automatically updated to match the value of a. This kind of binding is known as a simple binding since a node is simply set
to the value of another node. Node a is referred to as a dependency node of b, since b’s value depends on the value of a, and b
is referred to as an observer node of a since it actively observes its value.

https://github.com/alex-gutev/tridash/tree/master/tutorials
https://github.com/alex-gutev/tridash/tree/master/tutorials

Tridash Tutorials 2/72

1.2 First Application

We’ll use bindings to develop a simple application which asks for the user’s name and displays a greeting.

This tutorial targets the JavaScript backend and makes use of HTML for the user interface.

Note
Some knowledge of the basics of HTML, i.e. what tags, elements and attributes are, is necessary to complete this tutorial.

We’ll start off by creating an HTML file, called hello-ui . html, with the following contents:
hello-ui.html

<?

self.input-name.value -> name

name -> self.span-name.textContent
7>

<!doctype html>

<html>
<head>
<title>Hello Node</title>
</head>
<body>
<hl>Tutorial 1: Hello Node</hl>
<label>Enter your name: <input id="input-name"/></label>
<p>Hello </p>
</body>
</html>
Most of the file is HTML boilerplate, the interesting part is within the <? ... 2> tag. The content of this tag is interpreted

as Tridash code. Tridash code tags can be placed almost anywhere in the file, we’ve just chosen to place it at the top.
The Tridash code consists of two explicit binding declarations. Declarations are separated by a line break or a semicolon ; .

Tridash Code

self.input-name.value —-> name
name —-> self.span-name.textContent

The declaration in the first line binds the self . input—-name.value node to the name node.

The node self.input-name is a special node that references the input element, with id input-name, in the HTML file.
HTML elements can be referenced from within Tridash code, in the same HTML file, using the expression self.<id> where
<id> is substituted with the id of the element.

Tip

The . operator is a special operator for referencing subnodes of nodes, these will be explained in detail later. The subnode
identifier is the identifier which appears to the right of the operator. When a subnode of a node, that references an HTML
element, is referenced, the HTML attribute, of the element, with the same name as the subnode identifier is referenced.
Referencing attributes of HTML elements, from Tridash, allows the values of attributes to be bound to Tridash nodes.

The node self.input—-name.value, which references the value attribute of the HTML element with ID input-name,
is bound to the node name. Thus whenever the value of input—-name . value changes, the value of name is set to it. In other
words, whenever text is entered in the input element, the value of name is automatically set to the text entered.

In the second declaration, the name node is bound to the self.span-name.textContent node. self.span—name
references the HTML span element with ID span—-name, with the node self.span—-name.textContent referencing
the textContent attribute, i.e. the content, of the element. The result of this binding is that whenever the value of the name

Tridash Tutorials 3/72

node changes, its value is displayed in the span element. As mentioned earlier, the value of the name node is automatically set
to the text entered in the input element, thus the value entered in the input element is displayed in the span element.

The application we’ve just written, simply prompts the user for his/her name and displays “Hello” followed by the user’s name
directly below the prompt. Let’s try it out to see if it works.

1.2.1 Building

Run the following command to build the application:

tridashc hello-ui.html : node—-name=ui -o hello.html -p type=html -p main-ui=ui

That looks complicated, let’s simplify it a bit.

The t ridashc executable compiles one or more Tridash source files, generating an output file. The source files, in this case
hello.html, are listed after t ridashc. The name of the output file is given by the —o or ——output—-£file option, in this
case hello.html.

The snippet : node—name=ui sets the node—name option, for processing the source file hello-ui.html, to ui. This
creates a node ui with which the contents of the HTML file can be referenced.

Tip
The self node, when occurring within an HTML file is simply an alias for the node name, given by the node—-name option,
which references the contents of the HTML file.

The -p option=value command-line options sets various options related to the compilation output. The first option t ype
is set to html which indicates that the output should be an HTML file with the generated JavaScript code embedded in it. The
main—ui option is set to ui, which is the name of the node referencing the contents of the hello—ui.html file. It is the
contents of this file that are used to generate the output HTML file.

If all went well a hello.html file should have been created in the same directory, after running the command.

1.2.2 Running The Application

Open the hello.html file in a web-browser with JavaScript enabled. You should see something similar to the following:

Tutorial 1: Hello Node

Enter your name: |

Hello

Try entering some text in the text field, and press enter afterwards:

Tridash Tutorials 4/72

Tutorial 1: Hello Node

Enter YOur name. John

Hello John

Notice that the text entered appears next to the “Hello” message underneath the text field. This is due to the binding of the text
field to the name node and the binding of the name node to the contents of the span element placed adjacent to the “Hello”
text.

Now try changing the text entered in the text field:

Tutorial 1: Hello Node

Enter your name: John Doel

Hello John Doe

The text changes to match the contents of the text field. This demonstrates the automatic updating of a node’s state when the
state of its dependency nodes changes.

When the state (the value) of the text field changes:

1. The state of the name node is updated to the text entered in the field.

2. The content of the span element is updated to match the state of the name node.

1.3 Inline Node Declarations

The previous application can be implemented much more succinctly using implicit bindings and inline node declarations.
hello-ui.html

<!doctype html>
<html>
<head>
<title>Hello Node</title>
</head>
<body>
<hl>Tutorial 1: Hello Node</hl>
<label>Enter your name: <input value="<?@ name ?>"/></label>
<p>Hello <?@ name @></p>
</body>
</html>

Tridash Tutorials 5/72

Implicit bindings between an HTML node and a Tridash node can be established using the <?@ declaration ?> tag. This
is similar to the Tridash code tag, seen earlier, however an implicit binding is established between the nodes appearing in the tag
and the HTML node in which the tag appears.

If the tag is placed within an attribute of an element, an implicit two-way binding is established between the element’s attribute
and the node, appearing in the tag. If the tag appears outside an attribute, an HTML element is created in its place, and a binding is
established between the node appearing in the tag, and the content of the element (referenced as textContent from Tridash).

With inline declarations it is not necessary to give the HTML elements unique ID’s unless they will be referenced from within
Tridash code. In this example they have been omitted.

1.4 Two-Way Bindings

The bindings we’ve seen so far are one-way bindings, as data only flows in one direction, from the dependency node to the
observer node.

Example: One-Way Binding

a —>b

This is a one-way binding since the value of b is updated to the value of a when it changes, however, a is not updated when the
value of b changes.

If a binding in the reverse direction is also established:

b -> a

the binding becomes a two-way binding since the value of each node is updated when the value of the other node changes.

1.4.1 Example Application

The following simple application demonstrates two-way bindings:

ui.html
<?

a —>>b
b -> a
7>

<!doctype html>
<html>
<head>
<title>Two-Way Bindings</title>
</head>
<body>
<hl>Two-Way Bindings</hl>
<div><label>A: <input value="<?@ a ?>"/></label></div>
<div><label>B: <input value="<?@ b ?>"/></label></div>
</body>
</html>

The applications consists of two text input fields with the first field bound to node a and the second field bound to b, using inline
node declarations.

In the Tridash code tag, a two-way binding between a and b is established since a binding is declared in both directions:
*a —>5b

*b > a

Tridash Tutorials 6/72

Build the application using the following command, which is identical to the previous build command with only the source and
output file names changed.

tridashc ui.html : node-name=ui -o app.html -p type=html -p main-ui=ui

Open the resulting app . html file in a web-browser, and enter a value in the first text field:

Two-Way Bindings

A
B: 1

Notice that the content of the second text field is automatically updated to match the content of the first field.

Now change the value in the second field:

Two-Way Bindings

A3
B: 3

The value of the first field is updated to the value entered in the second field.

2 Functional Bindings

The bindings in the previous tutorial were pretty boring and limited. Whatever was entered in the text field was simply displayed
below it, verbatim. In-fact, this functionality is already offered by many web frameworks and GUI toolkits. The real power of
the Tridash language comes from the ability to specify arbitrary functions in bindings which are dependent on the values of more
than a single node. Moreover these bindings can be established in Tridash itself without having to implement "transformer” or
"converter" interfaces/subclasses in a lower-level language.

A functor node is a node which is bound to a function of the values of one or more nodes. It consists of an expression comprising
an operator applied to one or more arguments.

Functor Node Syntax

operator (argumentl, argument2, ...)

A binding is established between the argument nodes and the functor node. Whenever the value of one of the argument nodes
changes, the expression is reevaluated and the value of the functor node is updated.

Example: Functor of one argument

Tridash Tutorials 7172

to—1int (a)

The functor node is to—1int (a) consisting of the function to—int, which converts its argument to an integer, applied to the
value of node a. When the value of a changes, the value of to—int (a) is updated to a’s value converted to an integer.

Example: Functor of two arguments

a+b

This is a functor node of the function + which computes, you guessed it, the sum of its arguments, in this case a and b. Whenever
the value of either a or b changes, the value of a + b is updated to the sum of a and b.

Note

The + operator is registered as an infix operator, meaning it can be placed between its two arguments (infix notation), instead
of being placed before its arguments (prefix notation). a + b is transformed to prefix notation + (a, b), when parsed. Both
notations are equivalent and either notation can be written in source code.

Important
@ The spaces between an infix operator and its arguments are mandatory since a+b is a valid node identifier and is thus
interpreted as a single node with identifier a+b, rather than a functor node of the + operator.

Functor nodes can be bound to other nodes using the same —> operator.
Example: Binding functors to other nodes

a + b —> sum

In this example node sum is bound to a + b which is bound to the sum of a and b.

2.1 Example Application: Adding Numbers

We’ll build an application which computes the sum of two numbers, entered by the user, and displays the result.
Let’s focus on building the interface for now. Begin with the following ui .html file:
ui.html

<!doctype html>
<html>
<head>
<title>Adding Numbers</title>
</head>
<body>
<h1>Adding Numbers</hl>
<div><label>A: <input value="<?@ a ?>"/></label></div>
<div><label>B: <input value="<?@ b ?>"/></label></div>
<hr/>
<div>A + B = <?@ sum ?></div>
</body>
</html>

An interface consisting of two text input fields is created. The first field is bound to node a and the second to node b. Underneath
the fields the node sum is bound to an unnamed HTML element located next to “A + B =".

Nodes a and b are bound to the values of the two numbers. Node sum is to be bound to the sum of a and b.

Tridash Tutorials 8/72

Before we begin writing the binding declarations we need to import the nodes from the core module, you’ll learn more about
modules in a later tutorial, which we’ll be making use of in this application. The following imports all nodes from the core
module:

Import all nodes from module core

/import (core)

Nodes a and b are bound to the contents of the text fields, however the contents of the text fields are strings. We need to convert
a and b to integers in order to compute the sum. This is achieved using the to—int operator.

The sum of the integer values of a and b is computed using the + operator applied on the arguments to-int (a) and
to-int (b).

Computing Sum of a and b

to—int (a) + to-int (b)

Finally, we need to bind the sum to the node sum in order for it to be displayed below the fields.

to-int (a) + to—-int (b) -> sum

Adding the declarations, we’ve written so far, to a Tridash code tag (somewhere in the file such as at the beginning), completes
the application.

Tridash Code Tag
<?

/import (core)

to-int (a) + to—-int (b) -> sum
7>

2.1.1 Build Configuration File

To simplify the build command, the build options are specified in a build configuration file.

The build configuration file contains the list of sources, along with the source-specific options, and the output options in YAML
syntax (see https://yaml.org for details).

Create the following build.yml file:
build.yml

sources:
- path: ui.html
node—-name: ui

output:
path: app.html
type: html

main-ui: ui

The outer structure of the file is a dictionary with two entries sources and output.

The sources entry contains the list of source files either as a path or as a dictionary with the path in the path entry and the
processing options in the remaining entries. In this application there is one source file ui.html with one source processing
option node-name set to ui.

The output entry is a dictionary containing the path to the output file in the path entry, in this case app . htm1, and the output
options in the remaining entries, in this case type = html andmain-ui = ui which are the same options as in the previous
tutorials.

To build from a build configuration file run the following command:

https://yaml.org

Tridash Tutorials 9/72

tridashc -b build.yml

The —b option specifies the path to the build configuration file containing the build options. All other command line options are
ignored when this option is specified.

2.1.2 Running the Application

Open the app . html file in a web browser, and enter some numbers in the text fields:

Adding Numbers

A+B=5

Notice that the sum of the numbers is automatically computed and displayed below the fields.

Note
The sum will only be displayed once you have entered a valid number in each field.

Now try changing the numbers (remember to press enter afterwards):

Adding Numbers

Notice that the sum is automatically recomputed and the new sum is displayed.

2.2 Binding to Functor Nodes

The to—int operator is special in that a two-way binding is established between its argument and the functor node. Thus the
declaration to—-int (a) also establishes the binding to-int (a) —> a. The binding in the reverse direction, from functor to
argument, has the same function as the binding from the argument to the functor. Thus in to-int (a) -> a, a is bound to the
value of to—-int (a) converted to an integer.

This allows a binding to be established with a t o-int functor node as the observer.

Example: Binding with to-int as observer

Tridash Tutorials 10/72

x —> to-int (a)

In this example, to—int (a) is bound to x. Whenever the value of x changes, the value of to-int (a) is set to it, and the
value of a is set to the value of to—int (a) converted to an integer.

With this functionality, the application in this tutorial can be implemented more succinctly by moving the integer conversion
from the Tridash code tag to the inline node declarations.

Replace the declaration:

to-int (a) + to-int (b) —-> sum

with:

a + b —> sum

Replace <?@ a ?>and <?@ b ?>with<?@ to-int (a) ?>and <?@ to-int (b) 2> respectively.

The benefit of this is that the value conversion logic is moved closer to the point where the values are obtained, rather than being
littered throughout the core application logic. Nodes a and b can now be used directly, without having to be converted first, since
it is known that they contain integer values.

To simplify the application further, the sum node can be omitted entirely and <?@ sum ?> can be replaced with <?@ a + b
?>.

Improved Application

<?
/import (core)

?>
<!doctype html>
<html>
<head>
<title>Adding Numbers</title>
</head>
<body>
<hl>Adding Numbers</hl>
<div><label>A: <input value="<?Q@ to-int (a) ?>"/></label></div>
<div><label>B: <input value="<?@ to-int (b) ?>"/></label></div>
<hr/>
<div>A + B = <?@ a + b ?></div>
</body>
</html>

(:) Important
The /import declaration in the Tridash code tag has to be retained as it is responsible for importing the nodes
to-int and + from the core module.

3 Conditional Bindings

This tutorial introduces functionality for conditionally selecting the value of a node.

Tridash Tutorials 11/72

3.1 Case Operator

The special case operator selects the value of the first node for which the value of the corresponding condition node is true. The
case operator is special in that it has a special syntax to make it more readable.

Tip
The case operator is actually a macro-node, implemented in Tridash, which expands to a series of nested i £ functor expres-
sions. You can views its source in the modules/core/macros.trd file of your Tridash installation.

Syntax

case (
condition-1 : value-1,
condition-2 : value-2,

default-value

Each argument is of the form condition : wvalue where condition is the condition node and value is the corre-
sponding value node. The last argument may also be of the form value, that is there is no condition node, in which case it
becomes the default or else value.

The case functor node evaluates to the value of the value node corresponding to the first condition node which has a frue value
(equal to the value of the builtin node True), or the value of the default node, if any, when all condition nodes have a false (equal
to the value of the builtin node False) value.

Example
case (

>b : a->b
> a b - a

o o o

If the node a > Db evaluates to true, the case node evaluates to the value of a — b, otherwise if b > a evaluates to true, the
case node evaluates to the value of b — a. Ifneithera > bnorb > a evaluate to true, the case node evaluates to 0.

If the default value node is omitted and no condition node evaluates to true, the case node evaluates to a failure value (you will
learn about failure values in a later tutorial which introduces error handling).

3.2 Example 1: Maximum of Two Numbers
Let’s write a simple case expression which returns the maximum of two numbers, a and b, and returns the string “neither”
when neither number is greater than the other.

The case expression should evaluate to:

1. aifa > b
2. bifb > a

3. The string “neither” otherwise

These conditions are implemented by the following case expression:

case (
a>b : a,
b >a : b,
"neither" (1

Tridash Tutorials 12/72

o This is the literal string “neither”.

Tip
String constants are written in double quotes " . . . ".

Notice that the last argument does not have an associated condition. The case node evaluates to this argument if none of the
conditions, of the previous arguments, evaluate to true.

We can incorporate this in a simple application, which displays the maximum of two numbers entered by the user, using the
following HTML interface:

ui.html

<?
/import (core)

maximum <-
case (
a>b : a,
b >a : b,
"neither"

?>
<!doctype html>
<html>
<head>
<title>Maximum</title>
</head>
<body>
<hl>Maximum</h1>
<div><label>A: <input value="<?@ to-int (a) ?>"/></label></div>
<div><label>B: <input value="<?Q@ to-int (b) ?>"/></label></div>
<hr/>
<div>The maximum of <?@ a ?> and <?Q@ b ?> is <?@ maximum ?>.</div>
</body>
</html>

Tip
The <- operator is the same as the —> operator however with the arguments reversed, thatisb <- ais equivalenttoa ->
b.

The interface consists of two text fields, the contents of which are bound to nodes a and b. The to-int operator is used to
convert the string values to integers as in the previous tutorial.

The node maximum is bound to the value of the case functor, and its value is displayed in an unnamed HTML element below
the input fields.

Note
The values of a and b are also displayed below the input fields. This is to demonstrate that there is no limit to how many nodes
can be bound to a particular node.

Build and run the application, using the same build configuration file and command from the previous tutorials.

Enter some numbers in the text fields:

Tridash Tutorials

13/72

Maximum

The maximum of 10 and 15 is 15.

Notice that the maximum, 15 in this case, is displayed below the text fields. Also notice that the values entered in the text fields
are displayed as part of the message.

Now change the number, which is the maximum, to a different value which is still greater than the other number:

Maximum

Al 10
B: 17

The maximum of 10 and 17 is 17.

The new maximum is displayed. This demonstrates that if the values of the value nodes, of the case expression change, the
value of the case expression is updated.

Change the maximum number such that it is smaller than the other number:

Maximum

The maximum of 10 and 6 is 10.

This shows that the value of the case expression is also updated if the values of the condition nodes change.

Now finally change the numbers such that they are both equal:

Tridash Tutorials 14/72

Maximum

Al 10
B: 10

The maximum of 10 and 10 is neither.

The displayed maximum is “neither”” which is the default value of the case expression.

3.3 Example 2: Sum Limit

Let’s extend the application developed during the previous tutorial by adding the functionality for specifying a limit to the sum
of the two numbers. The application should inform the user of whether the limit was exceeded.

Start with the following slightly modified code from the previous tutorial.

<?
/import (core)

a + b —> sum

7>
<!doctype html>
<html>
<head>
<title>Sum Limit</title>
</head>
<body>
<hl>Sum Limit</h1>
<div><label>Limit: <input value="<?Q@ to-int (limit) ?2>"/></label></div>
<hr/>
<div><label>A: <input value="<?@ to-int (a) ?>"/></label></div>
<div><label>B: <input value="<?@ to-int (b) ?>"/></label></div>
<hr/>
<div>A + B = <?@ sum ?></div>
</body>
</html>

A new text input field for the limit has been added, with its value bound to the node 1imit.

Note
The sum a + b is bound to the node sum in order to facilitate the implementation of the new features.

The message “Within limit.” should be displayed if the sum is less than the limit (sum < 1limit), and “Limit Exceeded!”
otherwise. This can be implemented using the following case expression, which is bound directly to an unnamed element.

Add the following below the element where the sum is displayed.

<div>
<?Q@
case (
sum < limit : "Within Limit.",

Tridash Tutorials 15/72

"Limit Exceeded!"
)
?>
</div>

Note
There is no difference in efficiency between using the sum node or a + b directly. The value of a node is only computed once,

whenever one of its arguments changes, even if it is referenced in more than one location. Moreover the value of a node is not
computed if it is not used anywhere.

Build and run the application, and enter some initial values for the limit, a and b.

Sum Limit

Limit: 10

A+B=11
Limit Exceeded!

“Limit Exceeded!” is displayed since the sum of 11 did indeed exceed the limit of 10, with the numbers in the snapshot above.

Now try increasing the limit:

Sum Limit

Limit: 20

A+B=11
Within Limit.

The message changes to “Within Limit.”.

Tridash Tutorials 16/72

3.4 Improvements

Whilst the application we’ve implemented so far demonstrates the power of functional bindings, it is rather lacking in that whether
the limit has been exceeded or not is only indicated by text. The text has to be read in full to determine whether the limit was
exceeded, and changes from Within Limit to Limit Exceeded, and vice versa, are hard to notice. Some visual indications, such as
a change in the color of the sum, when the limit is exceeded, would be helpful.

As an improvement, we would like the text color of the the sum, and the status message, to be red when the sum exceeds the
limit, and to be green when it is within the limit.

Let’s start off by giving an ID to the elements in which the sum and status message are displayed, so that they can be referenced
from Tridash code. Surround <?@ sum ?> in a span element with ID sum and assign the div element, containing the status
message, the ID status.

<div>A + B = <?@ sum ?></div>
<div id="status">

<?Q
case (
sum < limit : "Within Limit.",
"Limit Exceeded!"
)
?>
</div>

Let’s create a node color which will be bound to the text color in which the sum and status message should be displayed. It
should have the value "green" when the sum is within the limit and the value "red" when the sum exceeds the limit. This
can be achieved by binding to a case functor node.

Note
The values "green" and "red" are strings, representing CSS color names.

Add the following to the Tridash code tag.

case (
sum < limit : "green",
n redll

) —> color

The value of the case functor node is "green" if sum is less than 1imit and "red" otherwise. The case functor node is
bound to the color node.

The color node somehow has to be bound to the text color of the sum and status elements. Text color is a style attribute
of an element. All style attributes are grouped under a single subnode style of the HTML element node. The text color is
controlled by the color attribute, referenced using style.color.

The color node is bound to the style attributes of the elements with the following (add to the Tridash code tag):
color —> self.sum.style.color

color -> self.status.style.color

Full ui.html code:

ui.html

<?
/import (core)

a t+ b —> sum

case (
sum < limit : "green",

Tridash Tutorials 17/72

"red"

) —> color

color —> self.sum.style.color
color —> self.status.style.color

7>
<!doctype html>
<html>
<head>
<title>Sum Limit</title>
</head>
<body>
<hl>Sum Limit</h1>
<div><label>Limit: <input value="<?Q@ to-int (limit) 2>"/></label></div>
<hr/>
<div><label>A: <input value="<?@ to-int (a) ?>"/></label></div>
<div><label>B: <input value="<?@ to-int (b) ?>"/></label></div>
<hr/>
<div>A + B = <?@ sum ?></div>
<div id="status">
<?@
case (
sum < limit : "Within Limit.",
"Limit Exceeded!"
)
7>
</div>
</body>
</html>

Build and run the application. Enter some values for a, b and the limit such that the sum exceeds the limit.

Sum Limit

Limit: 10

A2
B: 2

A+B=11

Limit Exceeded!

The status message and sum are now shown in red which provides an immediate visual indication that the limit has been exceeded.

Now increase the limit, or decrease the values of a and b:

Tridash Tutorials 18/72

Sum Limit
Limit: |20

A2
B: o

A+B=11
Within Limit.

The color of the status message and sum is immediately changed to green, which provides a noticeable indication that the limit
has no longer been exceeded.

4 Writing your own Functions

In this tutorial you’ll learn how to create your own functions, which can be used in functional bindings. Another feature which
distinguishes Tridash from frameworks/toolkits, which offer bindings, is that new functions can be written in the same language,
as the language in which the bindings are declared, rather than having to be implemented in a lower-level language.

Note
Only some of the example applications will be demonstrated. Visit the source code for the tutorials to try out the remaining
applications.

4.1 Definition Operator

New functions, referred to as meta-nodes, are defined using the special : operator, which has the following syntax:

function (argl, arg2, ...) : {
declarations...

}

The left-hand side contains the function name (function) followed by the argument list in brackets, where each item (argl,
arg2,...) is the name of the local node to which the argument at that position is bound.

The right-hand side, of the : operator, contains the declarations making up the body of the function, which may consist of any
Tridash node declaration. The value of the last node in the declarations list is returned by the function.

The meta-node can then be used as the operator of functor nodes, which are referred to as instances of the meta-node, declared
after its definition.

Tip
The curly braces { and } are optional if the meta-node body consists of a single declaration.

Example Adding Two Numbers

Tridash Tutorials 19/72

Add two numbers (1)

add(x, y) : x + vy

o This is a comment. Comments begin with a # character and extend till the end of the line. All text within a comment is
discarded.

In this example, an add meta-node is defined which takes two arguments, x and y, and returns their sum.
Our sum application can thus be rewritten as follows:

<?
/import (core)

Add two numbers

add(x, y) : x + vy
?>

<div><label>A: <input value="<?@ to-int (a) ?>"/></label></div>
<div><label>B: <input value="<?@ to-int (b) ?>"/></label></div>

A + B is <?Q@ add(a, b) 7?>

4.2 Node self

When an explicit binding to the self node is established inside a meta-node, the value of the sel f node is returned rather than
the value of the last node in the meta-node’s body.

The following is an alternative implementation of the add meta-node.

add(x, y) : {
X + y —> self

This is particularly useful when binding to subnodes of the self node, which you’ll learn about later.

4.3 Optional Arguments

Meta-node arguments can be designated as optional by giving the argument a default value. An optional argument is of the form

arg : value, where arg is the argument node identifier and value is the default value, to which it is bound, if it is not
provided.

Example

increment (n, delta : 1) : n + delta

In this example, the argument de1ta is optional and is given the default value 1 if it is not provided.
Examples

increment (n) # delta defaults to 1
increment (n, 2) # delta = 2

Tridash Tutorials 20/72

Default values don’t have to be constants, in-fact any node expression can be used as a default value. In the case that the default
value is a node, then that node will be implicitly bound to all instances of the meta-node, for which the argument is not provided.

Example: Node Default Values

Increment ‘n° by “d°

increment (n, d : delta) : n + d

In this example the default value for the delta d is the value of the global node delta. A binding between delta and each
instance of increment, for which a value for d is not provided, will be established.

The effect of this is demonstrated in the following example application:
ui.html

<?
/import (core)

Increment "n° by “d°

increment (n, d : delta) : n + d
2>
<!doctype html>
<html>
<head>
<title>Optional Argument Default Value</title>
</head>
<body>
<hl>Optional Argument Default Value</hl>
<div><label>N:
<input value="<?Q@ to-int (n) 2>"/></label></div>
<div><label>Delta:
<input value="<?@ to-int (delta) ?>"/></label></div>
<hr/>
<div>Increment (N): <?Q@ increment (n) ?2></div>
</body>
</html>

Enter an initial value for N and Delta:

N:
5
Delta:
]

Increment(N): 6

The value given to the delta (d) argument of increment is the initial value given for Delta, which is 1.

Now try changing Delta:

Tridash Tutorials 21/72

N:
5

Delta:
2|

Increment(IN): 7

The value of the increment (n) node is updated, with the new value of Delta given as the delta argument. This shows that a
binding is established rather than simply taking the value of the delta node.

4.4 Recursive Meta-Nodes

A recursive meta-node contains an instance of itself in its definition.
The following are the classic examples of recursion:
Example: Factorial

factorial (n)

case (
n <1 : 1, # Ignoring the case: n < 0
n * factorial(n - 1)

Example: Fibonacci Numbers

fib (n)
case (
n<=1:1,
fib(n - 1) + fib(n - 2)

Recursion is the means by which Tridash provides iteration. The definition of factorial, above, will result in the stack space
being exhausted for large values of n. This is due to the fact that each invocation of the meta-node consumes a certain amount
of stack space. Since the recursive call to factorial has to be evaluated before the return value of the current call can be
computed, the meta-node consumes an amount of stack space proportional to the value of n.

If the definition is rewritten such that it is tail recursive, that is the return value of factorial is the return value of the recursive
call, a constant amount of stack space is consumed.

Example: Tail-Recursive Factorial

factorial(n, acc : 1)
case (
n < 1 : acc, # Ignoring the case: n < 0
factorial(n - 1, n * acc)

This definition of factorial is tail recursive since the recursive call appears directly as the default value of the case expres-
sion, which is simply returned without any further operations performed on it.

In the previous implementation, the multiplication was performed on the result of the recursive call to factorial. In this
implementation, the multiplication is performed on an accumulator argument, acc which is passed on to the recursive call and
eventually returned when factorial is called withn < 1.

Note
Tridash supports general tail call optimization for mutually recursive meta-nodes.

Tridash Tutorials 22/72

4.5 Nested Meta-Nodes

A meta-node may contain other meta-nodes inside its definition. These meta-nodes may only be used within the body of the
meta-node and shadow meta-nodes, declared in the enclosing scope, with the same identifiers.

With nested meta-nodes we can rewrite our previous tail-recursive factorial meta-node without having to expose the accu-
mulator argument acc, which is an implementation detail.

Example: Factorial with nested iter meta-node

factorial (n) : {
iter(n, acc) : {
case (
n <1 : acc, # Ignoring the case: n < 0
iter(n - 1, n * acc)

}

iter(n, 1)

}

The computation of the factorial is implemented in the nested tail-recursive meta-node iter. The factorial meta-node
simply calls this meta-node with the initial value for the accumulator.

4.6 Local Nodes

Nodes which appear as the farget (observer) of a binding, declared within the body of a meta-node, are local to the meta-node’s
body and may only be referenced within it. These may be used to store intermediate results or to break up complex expression
into multiple nodes.

Example: Average

average (a, b) : {
sum <— a + b o
sum / 2
}
(1] Node sum is the binding rarget in this declaration.

In this example a local node sum is created, since it is bound (as the frarger) to the value of a + b. The value returned by
average is the value of sum divided by 2.

4.7 Referencing Outer Nodes

A meta-node may reference nodes declared in the global scope or the enclosing scope(s) containing the meta-node definition.
This creates a binding between the referenced node and each instance of the meta-node. The net result is that whenever the value
of the referenced node changes, the value of the instance is recomputed. In essence a reference to an outer node can be thought
of as an additional hidden argument.

Tip
An outer node with the same identifier as a local node can be referenced with the . . operator, e.g. . . (x).

Outer node references can be demonstrated by changing the definition of increment, in the Increment Application developed
earlier in this tutorial, to the following:

Increment with reference to delta

increment (n) : n + delta

The d argument has been removed and replaced with delta in the body.

Repeat the same experiment, changing the delta. You should observe the same results.

Tridash Tutorials 23/72

4.8 Fun Example: Simple Meter

In this example we’ll be developing an application which displays a simple meter, representing a quantity, which changes color
as the quantity approaches the maximum.

Let’s start off with the following HTML interface:

ui.html

<!doctype html>

<html>
<head>
<title>Simple Meter</title>
<style>
.meter-box {
margin-top: 5px;
width: 200px;
height: lem;
border: 1lpx solid black;
}
.meter-bar {
height: 100%;
}
</style>
</head>
<body>

<hl>Simple Meter</hl>
<div><label>Maximum: <input value="<?@ to-real (maximum) °?>"/></label></div>
<div><label>Quantity: <input value="<?Q@ to-real (quantity) ?>"/></label></div>
<div class="meter-box">
<div id="meter" class="meter-bar"></div>

</div>

</body>

</html>

Note
The file contains a few CSS class definitions for styling the elements which display the meter, located at the bottom of the file.

Note
The to-real meta-node is similar to t o—int except that it converts its argument to a real number rather than an integer.

The interface consists of two input fields for entering the values for the Maximum and Quantity, which are bound to the nodes
maximum and quantity, respectively.

We’d like the meter to be displayed in a color which is in between green (empty) and red (full) depending on where the value of
the quantity lies between 0 and the maximum.

First we’ll write a utility meta-node 1erp for linearly interpolating between two values:
Meta-Node lerp

lerp(a, b, alpha) : a + alpha » (b - a)

The value returned by lerp is the value between a and b proportional to where alpha lies between 0 and 1.

This meta-node will be used to interpolate between green and red depending on where the quantity lies between O and the
maximum.

We can compute the value for alpha by dividing the value for the quantity by the maximum.

Tridash Tutorials 24 /72

scale <- quantity / maximum

Note
This assumes that maximum is not 0.

Before we perform the interpolation, we need to make sure that scale is a value between 0 and 1. Let’s write another utility
meta-node clamp which clamps a value to a given range.

Meta-Node clamp

clamp (x, min, max)

case (
x < min : min,
X > max : maxg,
b4

This meta-node returns the value of its first argument x if it is between min and max, otherwise returns min if x is less than
min, or max if x is greater than max.

We can amend the computation of scale such that it does not exceed 0 and 1, by using the c1amp meta-node.

scale <- clamp (quantity / maximum, 0, 1)

Finally we can interpolate between the two colours. We’ll be using the HSL (Hue Saturation Luminance) colorspace, and
interpolating in the Hue component.

Note
The HSL, rather than the RGB, colorspace was used as it provides better interpolation results.

hue <- lerp (120, 0, scale)

hue is bound to a value interpolated between green (Hue 120) and red (Hue 0) with the value of scale as the interpolation
coefficient.

Before we bind the interpolated color to the color of the meter, let’s write another utility meta-node which takes values for the
hue, saturation and luminance components and produces a CSS HSL color string.

Meta-Node make-hsl

make-hsl (h, s, 1)
format ("hsl (%s, %s%%,%s%%)", h, s, 1)

Tip

The format meta-node produces a string in which %s placeholders in the format string (the first argument) are replaced with
the values of the corresponding arguments (following the format string). $% placeholders are replaced with literal % characters.
format ("Hello %s %s.", "John", "Smith") produces the string “Hello John Smith.”, as the first $s is replaced
with "John" and the second %s is replaced with "Smith".

We can now generate a valid CSS color string using make-hs1 that we’ll bind to the color of the meter element, which is the
element with ID meter.

self.meter.style.backgroundColor <-
make-hsl (hue, 90, 45)

Tridash Tutorials 25/72

Tip
The backgroundColor style attribute references the background color of an element.

The constant values 90 and 45 have been chosen for the saturation and luminance components.

The last thing we need to do is adjust the width of the meter depending on the quantity value. We’ll simply multiply the value of
scale by 100, to convert it to a percentage (indicating it should occupy that percentage of the width of its parent element), and
bind it to the meter element’s width attribute.

format ("$s%%", scale x 100) -> self.meter.style.width

Our application is complete. Add the following Tridash code tag to the top of the ui . html file.

<?
/import (core)

Utilities
lerp(a, b, alpha) : a + alpha » (b - a)

clamp (x, min, max)

case (
X < min : min,
X > max : max,
X

make-hsl(h, s, 1
format ("hsl (

)

5,%5%%,%s%%)", h, s, 1)

Application Logic
scale <- clamp (quantity / maximum, 0, 1)
hue <- lerp (120, 0, scale)

self.meter.style.backgroundColor <-
make-hsl (hue, 90, 45)

format ("$s%%", scale x 100) —> self.meter.style.width
7>

Build and run the application, and enter some values for the quantity and maximum, such that the quantity is less than half the
maximum.

Maximum:
100

Quantity:
20

Tridash Tutorials 26/72

Maximum:
100
Quantity:

40

The meter is mostly empty and displayed in a green color.

Now increase the quantity such that it is greater than half the maximum.

Maximum:
100

Quantity:
B0

Maximum:
100

Quantity:
a0

The meter is more than half full and its color approaches red as the quantity approaches the maximum.

5 Subnodes

You’ve already made use of subnodes in the previous tutorials, when binding to attributes of HTML elements. Now we’ll explores
subnodes in depth.

A subnode is a node which references a value out of a dictionary of values stored in a parent node.
Subnode Syntax

parent.key

The left hand side of the subnode . operator is the parent node expression and the right hand side is the key identifying the
dictionary entry.

Tridash Tutorials 27172

Note
key is interpreted as a literal symbol rather than a node identifier.

A dictionary can be created in a node by binding to a subnode of the node.

Example
"John" -> person.name
"Smith" -> person.surname

In this example, the value of the node person is a dictionary with two entries
name Bound to the string constant “John”.

surname Bound to the string constant “Smith”.

5.1 Example: Color Object

The meter application developed during the previous tutorial was a bit of mess with the various color components scattered
through the code.

To change the colors you’d first have to change the hue components, in the following code:

hue <- lerp (120, 0, scale)

It isn’t clear what the numbers 120 and 0 are supposed to be or which number corresponds to the hue component of which color.
To change the luminance and saturation components, you’d have to modify the following:

self.meter.style.backgroundColor <-—
make—hsl (hue, 90, 45)

There is also no interpolation of the saturation or luminance components.
The code can be made significantly more readable and maintainable by making use of a dedicated color object.

We’ll create a meta-node Color which takes the three color components as arguments and returns a dictionary storing the
components under the entries: hue, saturation and luminance.

How are we going to return a dictionary from a meta-node? We can create a dedicated local node, in which the dictionary is
created, such as the following:

Color (hue, saturation, luminance) : {
hue -> color.hue
saturation —-> color.saturation
luminance -> color.luminance

color

Or we can simply bind to subnodes of the self node.
Meta-Node Color

Color (hue, saturation, luminance) : {
hue -> self.hue
saturation -> self.saturation
luminance -> self.luminance

Tridash Tutorials 28 /72

The dictionary returned by Color is how colors will be represented in our application. Let’s create color objects for the two
colors and bind them to nodes:

color-empty <- Color (120, 90, 45)
color—-full <- Color (0, 90, 45)

Tip
color-empty and color—full are examples of constant nodes as their values are not dependent on other nodes and
are thus effectively constant.

Rather than interpolating between the components of color—empty and color-full in the global scope, we can create a
meta-node that takes two colors and the alpha coefficient, and returns the interpolated color.

Meta-Node lerp-color

lerp-color(cl, c2, alpha)
Color (
lerp(cl.hue, c2.hue, alpha),
lerp(cl.saturation, c2.saturation, alpha),
lerp(cl.luminance, c2.luminance, alpha)

The lerp—-color meta-node simply creates a new color, using the Color meta-node, with each component interpolated
between the two colors, using lerp.

We can use this to easily interpolate between the colors:

color <- lerp-color(color—-empty, color—-full, scale)

To convert the Color object to a CSS color string we have to pass each component to make-hs1 as an individual argument like
so:

make-hsl (color.hue, color.saturation, color.luminance)

However, the internal representational details of the color are leaking into the application logic. All it takes is to accidentally
pass a single component twice or pass the components in the wrong order and there is a bug.

To rectify this we can rewrite make-hs1 to take a Color object or we can bind a subnode of the Color object to the CSS color
string.
Modify Color to the following:
Color (hue, saturation, luminance) : {
hue -> self.hue

saturation -> self.saturation
luminance -> self.luminance

make-hsl (hue, saturation, luminance) -> self.hsl-string

We’ve added a new declaration to Color which binds the hs1-string subnode of self to the CSS HSL color string, created
using make-hs1. Since the values of nodes are only evaluated if they are used, and subnodes are no different, the value of the
subnode hs1-string will only be computed for the final color object, not the color-empty and color—full objects.

Tip
If you'd like to make the code even neater you can move the definition of the make-hs1 meta-node inside the Color meta-
node.

Tridash Tutorials 29/72

The interpolated color can be bound to the meter’s background color with the following:

color.hsl-string -> self.meter.style.backgroundColor

We now have a new more readable and maintainable version of the meter application. Replace the Tridash code tag with the
following:

<?
/import (core)

Utilities
lerp(a, b, alpha) : a + alpha » (b - a)

clamp (x, min, max)

case (
X < min : min,
X > max : max,
b4

make-hsl (h, s, 1
(

)
%5,%5%%,%s%%)", h, s, 1)

format ("hsl
Color (hue, saturation, luminance) : {

hue -> self.hue
saturation -> self.saturation
luminance -> self.luminance
make-hsl (hue, saturation, luminance) -> self.hsl-string
lerp-color(cl, c2, alpha)
Color (
lerp(cl.hue, c2.hue, alpha),

lerp(cl.saturation, c2.saturation, alpha),
lerp(cl.luminance, c2.luminance, alpha)

Application Logic

color-empty <- Color (120, 90, 45)
color-full <- Color (0, 90, 45)

scale <- clamp (quantity / maximum, 0, 1)

color <- lerp-color (color—-empty, color—-full, scale)

color.hsl-string —-> self.meter.style.backgroundColor

format ("$s%%", scale x 100) -> self.meter.style.width
7>

Compared to the previous version, this version has a number of benefits:

1. Itis clearly visible where the two colors are defined, and thus can be changed easily.
2. The color components are kept in a single place rather than being scattered throughout the code.

3. All color components are interpolated.

Tridash Tutorials 30/72

6 Error Handling with Failure Values

Up till this point we have completely ignored the issue of what happens if the user provides invalid input. In this tutorial, failure
values and their use in handling errors will be introduced.

6.1 Invalid Input

First let’s investigate more closely what happens when an invalid value is entered by the user. Let’s try it out with the sum
application we wrote in Section 2.

You may have noticed that nothing happens if a number is only entered in one of the fields:

Adding Numbers

A
E.

A+B-=

Let’s enter an invalid value for B, and see what happens:

Adding Numbers

A+B-=

Again nothing. Is there something wrong with application?

Let’s change B to a valid number:

Adding Numbers

Tridash Tutorials 31/72

Now we get the result of the addition, 3. The application resumed its normal operation when valid input is entered.

What will happen if we change one of the fields to an invalid value, let’s try changing A this time:

Adding Numbers

Al bar
B: 2

A+B=3

No change in the result of 3. It appears the application does not change the result if invalid input was entered. This demands an
explanation.

6.2 Failure Values

What’s really going on under the hood is that when a value, which is not a valid number, is entered in one of the input fields, the
node bound to that field is set to a failure value.

A failure value is a special type of value which, when evaluated, terminates the evaluation of the node, by which it was evaluated,
and the node’s value is set to the failure value. Failure values represent the failure of an operation, the absence of a value or
special classes of values.

In the sum application, a failure value is returned by the to—int meta-node, when the argument is a string which does not
contain a valid integer. Thus to—-int (a) evaluates to a failure value if the value entered in the input field for A does not contain
a valid integer.

Note
Remember that to—int (a) is bound, as the target, to the value entered in the text input field.

The observer of to-int (a) is a, and is thus set to the failure value returned by to—-int. Node a + b evaluates node a,
thus evaluating the failure value. This results in the computation of the sum (a + b) being terminated and node a + b, and its
observer sum, being set to the failure value.

By default when a node, bound to a user interface element, evaluates to a failure value, the user interface is not updated. As a
result the application appears to be doing nothing.

6.3 Handling Failures

Whilst the current behaviour of the application is a step up from crashing or producing garbage results, it does not provide any
indication to the user that the input entered was invalid. This is confusing to the user as the application appears to not be working
properly. Proper error handling should be in place.

The core module provides a handy utility meta-node fails?, which returns true if its argument node evaluates to a failure,
and false otherwise. This can be used to detect failures in our application and display an appropriate error message.

Tip
A related utility meta-node ?, also from the core module, returns true if its argument does not evaluate to a failure.

Tridash Tutorials 32/72

We need to detect failures in the a and b nodes which are bound to the values of the input fields for A and B, respectively. This
can be achieved using the expression fails? (a) foraand fails? (b) for b.

We would like to display a message, indicating that the input entered was invalid, next to the field where invalid input was entered.
This can be achieved using a case expression. The following is the case expression for a:

case (

fails?(a) : "Not a valid number!",
nn

The case expression returns the constant string “Not a valid number!”, if fails? (a) is true, that is a evaluates to a failure,
otherwise it returns the empty string. To display the error message next to the field for A, we can simply place the entire case
expression in an inline node declaration, between <2@ ... 7?>, next to the field. We can do the same for B, substituting a
with b, to get an error indication for B as well.

That’s it we have added error handling to an existing application without having to make fundamental changes to our application
logic. In-fact the addition of error handling was as simple as adding new UI elements.

Let’s try it out. Build and run the application and enter an invalid value in one of the input fields:

Adding Numbers

: foo Mot a valid number!

The message “Not a valid number!” is displayed next to the field containing the invalid value, B in this case.

Now correct the invalid value, to a valid number:

Adding Numbers

W 3
| —

A+B=7

The message disappears and the sum is computed.

6.3.1 Cleaning Up

The error handling logic, added in the previous section, can do with some cleaning up.

Tridash Tutorials 33/72

* The error message is duplicated next to both fields. If we’d like to change the message we’d have to make sure we’ve changed
it in both places.

* The case expression is identical for both fields with the only difference being the node. If we change the error handling logic,
to display a different message, we’d have to edit both the case expressions.

The case expression can be extracted into a meta-node, let’s call it error-message which takes the node as input and returns
the appropriate error message.

Meta-Node error-message

error—-message (value)
case (

fails? (value) : "Not a valid number!",
nw

Add this definition to the top of the Tridash code tag.
We can now replace the case expressions, inside the inline node declarations with the following for field A:

error—-message (a)

and the following for field B:

error—-message (b)

Changes to the error message and error handling logic are now much easier to implement as only the definition of the error-message
meta-node needs to be changed.

6.4 Initial Values

You may have noticed that the error messages are not displayed initially, when the input fields are empty. Similarly no visible
result is observed until a value is entered in both fields. You’re probably wondering why this is so, as an empty string is certainly
not a valid integer. In-fact, if you first enter a valid integer in a field, and then change its value to empty, the error message will
be displayed.

The problem is that the nodes a and b are not given initial values. As a result the value of the error-message (a) node, and
the corresponding node for b, is not computed until a is given its first value. But then what happens when the node a + b is
updated after a value is entered in the first field, A, only? Since only the dependency a, of a + b has been given a value, a +
b does not have a value for b and thus the value it uses for b defaults to a failure. To solve this problem we can give initial values
to a and b.

An explicit binding in which the source is a literal constant and the farget is a node is interpreted as giving the node an initial
value, equal to the constant.

The following assigns an initial value of 1 to a and 2 to b:

Example
1 > a
2 > Db

The setting of the initial values is treated as an ordinary value change from the default failure value to the given initial value,
which occurs immediately after the application is launched. As a result, the values of the node’s observers are updated. In this
case the nodes: a + b, error-message (a) and error-message (b) will be updated.

In our application, let’s give both a and b an initial value of 0. Add the following to the Tridash code tag at the top of the file:

0 -> a
0 ->Db

Tridash Tutorials 34/72

Build and run the application:

Adding Numbers

Ao
B: o

A+B=0

Both fields are initialized to 0 and the sum of 0 is displayed.

Experiment with changing the node’s initial values and even try setting them to invalid integers.

Note
You may be wondering how it is that giving an initial value to the nodes a and b affects the values of the text input fields. This

is due to the fact that there is a two-way binding between a and the value of the input element for A, and between b and the
value of the input element for B.

6.5 Exercise

As an exercise make the color of the border, or alternatively the background color, of the input element change to red when an
invalid value is entered in it.

Try to achieve something similar to the following:

Adding Numbers

A lfoo Not a valid number!

Note
Some CSS styling rules have also been added to change the text color of the error messages to red, this is not part of the

exercise.

Tip
To change the border color of an element bind to the style.borderColor attribute of the element node.

Tridash Tutorials 35/72

7 Failure Types

The error handling tools we’ve seen so far have one serious shortcoming, there is no means for identifying the cause of the error.
In the application, which we augmented with error handling in the previous tutorial, we don’t check at all what the cause of the
failure is. Instead, we simply assumed that a failure value means invalid input was entered. Whilst this is the case in our simple
application, it is not the case for more complex real world applications where there are many potential sources of errors.

7.1 Identifying the cause of Failures

Each failure value has an associated type, which is a value that identifies the cause of the failure. The failure type can be obtained
using the fail-type meta-node from the core module. If the argument of fail-type evaluates to a failure, the meta-node
returns its type, otherwise if the argument does not evaluate to a failure or evaluates to a failure without a type, the meta-node
returns a failure.

The meta-node fail-type is a bit clunky to use as it, itself, returns a failure if the argument does not evaluate to a failure
value. The utility fail-type? meta-node, also from the core module, takes two arguments, a value and a failure type, and
returns true if the value evaluates to a failure of that type.

A value used as a failure type is generally bound to a constant node, which is used in place of the raw value. An accompanying
node, with the same identifier but with a trailing ! is bound to a failure of the type.

7.2 Example: Checking Failure type in Adding Numbers Application

The type of the failure returned by to-int, when given a string that does not contain a valid integer, is designated by
the node Invalid-Integer, from the core module. The node Invalid-Integer! is bound to a failure of type
Invalid-Integer.

We can use the fail-type? meta-node to explicitly check whether the failure is of the type Invalid-Integer. Simply
replace fails? (value) with fail-type? (value, Invalid-Integer) in the definition of the error-message
meta-node.

Improved error-message Meta-Node

error—-message (value)
case (

fail-type? (value, Invalid-Integer) : "Not a valid number!",
nmw

The new implementation returns the string “Not a valid number!” only for errors caused by invalid input being entered. It returns
the empty string for errors of any other type.

7.3 Creating Failure Values

Failures are limited in use if they can only be created by builtin meta-nodes. You can create your own failure values using the
fail meta-node, which takes one optional argument— the type of the failure. If the type argument is not provided, a failure
without a type is created.

Example

Creates failure with no type
fail()

Creates a failure with type "My-Type’
fail (My-Type)

Tridash Tutorials 36/72

7.3.1 Example: Positive Numbers Only

Suppose for some reason, we’d like to limit the numbers being added, in the Adding Numbers application, to positive numbers.
It could be that the numbers represent amounts for which negative values do not make sense in the context of the application.

Let’s write a meta-node, validate, which takes an integer value and returns that value if it is greater than or equal to zero.
Otherwise it returns a failure of a user-defined type designated by the node Negat ive—-Number.

Meta-Node validate

validate (x)
case (
x >= 0 : x,
fail (Negative-Number)

If the argument x is greater than or equal to zero it is returned directly, otherwise a failure, created using the fail meta-node,
of type designated by Negat ive—-Number is returned.

Now let’s bind the Negat ive—Number node to a value, which uniquely identifies the failure. For now let’s choose the
value —1. While we’re at it let’s also define the Negative-Number! meta-node which is simply bound to a failure of
type Negative—Number.

Failure Type "Negative-Number *

Negative-Number <- -1
Negative-Number! <- fail (Negative—-Number)

We can simplify validate by substituting fail (Negative-Number) with Negative—-Number!:
Simplified validate Meta-Node

validate (x)
case (
x >= 0 : x,
Negative-Number!

Note
It does not matter whether you place the binding declarations of the nodes Negat ive—Number and Negative—-Number!!
before or after the definition of validate.

To incorporate this in our application, we have to change the nodes, to which the input fields are bound, from a and b to input-a
and input-b.

Replace a with input—-a, in the text field for A, and b with input—Db in the text field for B.
<label>A: <input value="<?@ to-int (input-a) ?>"/></label>

<label>B: <input value="<?@ to-int (input-b) ?2?>"/></label>

Also change the setting of initial values such that they are set on nodes input—-a and input-b rather than a and b.
0 -> input-a

0 —> input-b

Now we’re going to bind a to the result of validate applied on input—a and we’re going to bind b to the result of validate
applied on input—b.

Tridash Tutorials 37/72

a <- validate (input-a)
b <- validate (input-b)

Finally let’s update the error-message meta-node to return “Number must be greater than or equal to 0!” in the case that the
failure is of type Negat ive—Number.

Updated error-message Meta-Node

error—-message (value)
case (
fail-type? (value, Invalid-Integer)
"Not a valid number!",
fail-type? (value, Negative-Number)

"Number must be greater than or equal to 0O!",
nw

Build and run the application and enter a positive number in one field and a negative number in the other:

Adding Numbers

A
B:l-1 Number must be greater than or equal to 0!

A+B=1

The error message, explaining that a positive number (or zero) must be entered, is displayed next to the field where the negative
number was entered, B in this case. The result of the addition with the new numbers entered is not displayed, instead the previous
result is retained, as expected.

Change the negative number to an invalid number:

Adding Numbers

A
B: foo Not a valid number!

A+B=1

The error message changes to “Not a valid number!” and the displayed sum is unchanged, as in the previous versions.

Now change the value to a valid positive number:

Tridash Tutorials 38/72

Adding Numbers

A+B=3

The error message disappears and the new sum is displayed.

7.4 Proper Failure Types

There is one issue with the application we’ve just developed. There is no guarantee that the arbitrary constant —1 uniquely
represents a failure of type Negat ive—-Number. If all failure types used arbitrary integer constants, there is no guarantee that
—1 doesn’t already represent a builtin failure type, such as Invalid-Integer. Whilst it so happened to work, it is certainly
not robust, especially when bringing in third party libraries.

A value, which is guaranteed to be unique, can be obtained by taking a reference to the raw node object of Negat ive-Number.

A reference to the raw node object, of a node, can be obtained using the & special operator, which takes the identifier of the node
as an argument. Raw node references are mostly useful when writing macros, which you’ll learn about in a later tutorial. For
now all that you need to know is that this value can serve as the failure type, i.e. can be compared using =, and is guaranteed to
be unique.

Replace the binding declaration for Negat ive-Number with the following:
Proper Negative-Number Failure Type

Negative-Number <- & (Negative-Number)

And now we have a robust way of distinguishing between failures originating from t o—int, due to the input fields not containing
valid integers, and errors originating from our own application logic.

8 Target Node Transforms

Wow, we had to make so many fundamental changes to our code just to implement a minor change in the input accepted by the
application. We had to:

1. Add the nodes input-a and input-Db, for which we had to come up with meaningful identifiers.
2. Change the input fields to be bound to input-a and input-Db rather than a and b.
3. Change the initial values to be assigned to input—a and input—-b rather than a and b.

4. Bind ato validate (input-a) and b to validate (input-b).

This is contrary to “simply adding new UI elements” which was the case when we introduced error handling. We can do better.

Notice that a lot of the code we added was simply repetitive binding boilerplate code, which is the same for both a and b. It
would be nice if we could somehow abstract it away and not have to write the same code for both nodes. Luckily, there is a way.

Remember, from the second tutorial, that some meta-nodes, such as to—-int, are special in that a two-way binding is established
between the meta-node instance and the argument node. This allows instances of the meta-node to also appear as targets of
bindings.

Refresher Example

Tridash Tutorials 39/72

The following
a —> to—int (b)

Is equivalent to
to—-int (a) -> b

It turns out to—1int is not so special as we can do the same for our own meta-nodes by setting the target—node attribute.

8.1 Node Attributes

Node attributes are simply key-value pairs associated with a node, which control various compilation options. Attributes are set
using the special /attribute operator:

/attribute Operator Syntax

/attribute (node, key, value)

This sets the attribute of node with key key to the value value.
Examples

Set value of attribute "my-attribute’ to 1
/attribute (a, my-attribute, 1)

Set value of attribute "akey to literal symbol "raw-id’
/attribute (b, "akey", raw-id)

Important

@ key and value are interpreted as literal symbols rather than references to the values of nodes. Attribute keys are
case insensitive and there is no difference between raw symbols and string keys. The following keys key, Key, "key"
and "kEy" all refer to the same attribute.

@ Important

Node attributes do not form part of a runtime node’s state.

8.2 Attribute target—node

The target-node attribute determines, when set, the meta-node which is used as the binding function of the binding in the
reverse direction, from a meta-node instance to the meta-node arguments.

As an example, a meta-node £ with its target—node attribute set to g results in the following:

Example

/attribute (f, target-node, g)

The following
a —> f(b)

Is equivalent to
g(a) > b

Tridash Tutorials 40/72

In the example above the target-node attribute of f is set to g. Thus the declaration £ (b) also results in the binding
g (f (b)) -> b being created.

The meta-node t o—int simply has its target—node attribute set to itself, which is why it performs the same function, when
it appears as the target of a binding, as when it appears as the source of a binding.

Tip

The to-int meta-node performs the same function as the int meta-node however the difference is that when an instance
of int appears as the target of a binding, pattern matching (which will be introduced in a later tutorial) is performed, whereas
to—1int simply performs the same function. int has not been mentioned till this point to avoid creating confusion as to what’s
the difference between it and to-int.

8.3 Target-Node for own Meta-Nodes

Our code can be simplified considerably by allowing a meta-node, which performs the additional input validation, to be bound
(as the target) to the values in the input field. Let’s first write that meta-node, called valid-int which is responsible for
converting an input string to an integer and ensuring that the resulting integer is greater than or equal to zero. In essence this
meta-node combines to—int, we’ll use int this time, and validate.

Meta-node valid-int

valid-int (value) : {
x <- int (value)
validate (x)

In order to allow the node to appear as the target of a binding, and still perform the same function, let’s set its target—node
attribute to itself:

/attribute (valid-int, target-node, valid-int)

Now we can bind the contents of the input fields directly to an instance of the valid-int meta-node. In-fact, we can place the
valid-int instance directly in an inline node declaration.

Replace to-int (input-a) with valid-int (a), and the same for b, in the input fields as follows:

<label>A: <input value="<?@ valid-int (a) ?>"/></label>
<label>B: <input value="<?Q@ valid-int (b) ?>"/></label>

The nodes input—a and input—b can be removed, as well as the following declarations:

a <- validate (input-a)
b <- validate (input-b)

The initial values of 0 can once again be given to the nodes a and b rather than input—a and input-b.

0 -> a

The following is the full content of the Tridash code tag.

/import (core)
Error Reporting

error—-message (value)
case (
fail-type? (value, Invalid-Integer)
"Not a valid number!",
fail-type? (value, Negative-Number)

Tridash Tutorials 41/72

"Number must be greater than or equal to O!",
nmw

Input Validation

Negative-Number <- & (Negative-Number)
Negative—-Number! <- fail (Negative—-Number)

validate (x)
case (
x >= 0 : x,
Negative-Number!

valid-int (value) : {
x <—- int (value)
validate (x)

/attribute (valid-int, target-node, valid-int)
Initial Values

0 -—> a
0 ->Db

Compared to the previous version, the only modifications are in the error-message meta-node, the inline bindings in the
input fields and the addition of the validate and valid-int meta-nodes along with the Negat ive-Number failure type.
This version, however, did not require the addition of new nodes or modifying the bindings comprising the core application logic.
Changing the input validation logic was simply a matter of substituting to—int with valid-int in the bindings to the input
field values.

9 Contexts

Throughout these tutorials, we’ve glossed over two-way bindings without going into much detail of how they work, yet they were
a vital component of every application as the bindings to the UI elements have all been two-way bindings.

Each node has a number of contexts which store information about how to compute the node’s value, i.e. what function to use
and what dependencies are operands to the function. The active context of a node, at a given moment in time, is the context
which is used to compute the node’s value. In general, a context is activated when the value of an operand node of the context
changes. By default, a node context is created for each dependency of a node which was added by an explicit binding.

Example

a —> x # Context created for dependency "a°
b -> x # Context created for dependency 'b"
c —-> x # Context created for dependency "c°

In this example node x has three contexts one for each of its dependency nodes, a, b and c, to which it is bound explicitly.

An implicit binding between a meta-node instance and the meta-node arguments does not result in the creation of a context for
each operand.

a + b

Nodes a and b are implicitly added as dependencies of a + b however they are added as operands to the same context with the
+ function.

The following application demonstrates how different contexts are activated, when the values of their operand nodes change.

ui.html

Tridash Tutorials 42 /72

<?

X —> node
y —> node
z —> node

7>
<!doctype html>
<html>
<head>
<title>Node Contexts</title>
</head>
<body>
<div><label>X: <input value="<?@ x ?>"/></label></div>
<div><label>Y: <input id="b" value="<?Q@ y ?>"/></label></div>
<div><label>Z: <input value="<?Q@ z ?>"/></label></div>
<hr/>
<div>Last value entered: <?@ node ?></div>
</body>
</html>

This is a simple application consisting of three text input fields bound to nodes x, y and z. Nodes x, v and z are each explicitly
bound to node, the value of which is displayed below the fields.

Let’s enter a value in each field and see what happens. Observe the value displayed below the fields after each change:

Last value entered: 1

X
Y: 7|
Z.

Last value entered: 2

Last value entered: 3

Notice that after each change, the value that was just entered is displayed.

Now let’s try changing the values of the fields which were edited previously:

Tridash Tutorials 43/72

X
Y: 10|
L3

Last value entered: 10

In this case the value of the second field, Y, was changed to 10 and that value was immediately displayed below the fields.

The value of the field that was changed last is displayed. To understand why this is so, let’s examine the sequence of steps taken
when a value is entered in the X field.

1. The value of x, which is bound to the value in the X field, is updated.
2. The context corresponding to the binding x —> node is activated due to the value of x being updated.

3. The value of node is updated to the value of x.

Contexts make two-way bindings possible:
Example

inputl -> a

Two-way binding
a > b; a-—>>b

input2 -> b

Tip
The ; character separates multiple declarations written on a single line.

a has two contexts corresponding to dependency nodes inputl and b (which is also an observer). b has two contexts corre-
sponding to dependency nodes input2 and a.

When input1 is changed, the contexts corresponding to the bindings in the following direction are activated:

e inputl -> a

*a —>Db
When input?2 is changed, the contexts corresponding to the bindings in the following direction are activated:
e input2 -> b

*b > a

9.1 Explicit Contexts

The context of a binding can be set explicitly to a named context, using the @ operator from the core module.

a —> b @ context-id

Tridash Tutorials 44 /72

The binding a -> b is established in the context, of b, with identifier context—-id.

When multiple bindings are established to the same explicit context, the observer node takes on the value of the first operand
which does not evaluate to a failure. The operands are ordered by the order in which the explicit bindings are declared in the
source file. If all the operands evaluate to failures, the node evaluates to the failure value of the last operand.

This is better explained with an example application:
ui.html
<?

/import (core)

x —> node @ context
y —> node @ context
z —> node @ context

>
<!doctype html>
<html>
<head>
<title>Explicit Contexts</title>
</head>
<body>
<div><label>X: <input value="<?@ to-int (x) ?>"/></label></div>
<div><label>Y: <input value="<?@ to-int (y) ?>"/></label></div>
<div><label>Z: <input value="<?@ to-int (z) ?>"/></label></div>
<hr/>
<div>Value: <?@ node ?></div>
</body>
</html>

This application is similar to the previous application except the bindings from nodes %, y and z, to node are established in an
explicit context with identifier context. Additionally the input fields are bound to to—-int instances, of x, y and z which
results in x, v and z being bound to the values entered in the fields converted to integers. If a non-integer value is entered in a
field, the corresponding node is bound to a failure value.

Let’s try it out. Enter some integer values in each of the fields:

Value: 1

The value entered in the first field, X, was displayed. Since a valid integer was entered, node x evaluates to the integer value 1.
The binding x —> node was established first, as the declaration occurs first in the source file, and since x does not evaluate to
a failure, node takes on the value of x. The values of y and z are ignored.

Now let’s change x to a non-integer value:

Value: 2

Tridash Tutorials 45/72

The value entered in the second field, 2, is displayed. Since a non-integer value was entered in the first field, x evaluates to a
failure. node thus takes on the value of the next dependency, bound to the explicit context, which does not evaluate to a failure.
The dependency is y which evaluates to the integer entered in the second field, 2.

Let’s see what happens if we enter a non-integer value in the third field:

2 bar

Value: 2

The displayed value is unchanged since the second dependency, node vy, already evaluates to a value which is not a failure value.
The value of the third dependency z, corresponding to the value entered in the third field, is ignored, regardless of whether it
evaluates to a failure or not.

9.2 Handling Failures with Explicit Contexts

Explicit contexts are a useful tool for handling failures. In the previous application a failure originating from the first input field,
was handled by taking the value of the node bound to the second field. Similarly a failure originating from the second input field
is handled by taking the value entered in the third field.

The @ operator also allows a binding to be activated only if the result of the previous binding(s), in the same context, is a failure
value with a given type. When the context identifier is of the form when (context, type) the binding is only activated if
the result of the previous binding(s) is a failure of type type.

Example

X —> node @ context
y —> node @ when (context, Invalid-Integer)
z —> node @ when (context, Negative-Number)

Three bindings to node are established in the explicit context context.

node is primarily bound to the value of x if it does not evaluate to a failure. If x evaluates to a failure of type Invalid-Integer,
node is bound to the value of y. If x, or y evaluate to a failure of type Negat ive—-Number, then node is bound to the value
of z.

To try this out replace the binding declarations, in the application from the previous section, with the declarations in the example
above. Also copy over the definition of the meta-nodes valid-int, validate and the Negative-Number failure type
from Section 8.3, into the Tridash code tag. Replace to—int with valid-int in the inline node declarations within the input
field values.

Enter a non-integer value in the first field, and an integer value in the second and third fields:

Value: 1

Tridash Tutorials 46 /72

The value of the second field is displayed, since node is bound to it when the value in the first field is not an integer.

Now change the value of the second field to a negative integer, or alternatively enter a negative integer value in the first field:

Value: 2

The value of the third field is displayed in both cases, even when the value of the second field is a valid positive integer. This is
due to node being bound to the value of the third field when either the value of the first field or second field is a negative number.

Tip
when is registered as an infix operator thus the following:

a —> b @ when(context, type)

can be rewritten as:

a —> b @ context when type

9.3 Improved Error Handling in Adding Numbers

Whilst the error handling logic in the Adding Numbers application, from Section 8, is adequate and correct, the definition
of the error-message meta-node, responsible for selecting an appropriate error message, can be improved using explicit
contexts. The current definition repeatedly checks whether the failure type of the value argument is of a given type using the
fail-type? meta-node. This is repetitive and does not convey the intent that this is error handling/reporting logic.

The error-message meta-node returns:

* The empty string if the value argument does not evaluate to a failure.
* The string “Not a valid number!” when value evaluates to a failure of type Invalid-Integer.

* The string “Number must be greater than or equal to 0!” when value evaluates to a failure of type Negat ive—-Number.

We can re-implement this logic using bindings to the se1f node with explicit contexts.

The self node should primarily be bound to the empty string, if the value argument does not evaluate to a failure. There is
a handy utility meta-node, ! -, in the core module, which returns the value of its second argument if the first argument does
not evaluate to a failure. If the first argument evaluates to a failure value, it is returned. This meta-node is registered as an infix
operator thus can be placed between its arguments.

The primary binding can thus be written as follows:

Tridash Tutorials 47172

value !—= "" —>
self @ context

If this binding results in a failure of type Invalid-Integer, self should be bound to the constant string “Not a valid
number!”. This is achieved with the following:

"Not a valid number!" ->
self @ context when Invalid-Integer

Finally self should be bound to “Number must be greater than or equal to 0!”, if the previous bindings resulted in a failure of
type Negative—-Number.

"Number must be greater than or equal to 0!" ->
self @ context when Negative-Number

Putting it all together we have the following definition of error-message re-implemented using explicit contexts:
New implementation of error-message

error—-message (value) : {
value !- "" —>
self @ context

"Not a valid number!" ->
self @ context when Invalid-Integer

"Number must be greater than or equal to 0!" -—>
self @ context when Negative-Number

The advantage of this implementation is that it more explicitly conveys the intent that this is error handling logic. As such it can
be optimized more effectively, e.g. if self evaluates to a failure of type Negat ive—Number, the check for whether the failure
type is Invalid-Integer can be skipped altogether.

An additional advantage of this implementation is that the third binding is activated on failures of type Negative-Number
originating both from the first and second bindings whereas the previous implementation only handled failures originating in
value. In this case it doesn’t make a difference as the second binding cannot result in a failure of type Negative-Number.
However this does make a difference, in more complex error handling logic, where the handling of an error may itself result in a
New error.

This implementation does, however, have a difference from the previous implementation in that if value evaluates to a failure
of a type other than Invalid-Integer or Negative—Number it returns a failure, whereas the previous implementation
returned the empty string. In this application it doesn’t make a difference as the arguments passed to error-message do not
evaluate to failures of other types.

9.4 Concise Syntax

Coming up with a context identifier and typing it out repeatedly can become tiresome. The original reason for having an identifier
for explicit contexts is to distinguish them from the remaining contexts which are implicitly created and to allow for multiple
explicit contexts. However, there is usually only a single explicit context used for handling failures.

To shorten the syntax for binding to an explicit context, a default identifier, such as __ can be given to all explicit contexts which
are used only for handling failures. Alternatively, the @ operator can take a single argument, the node, in which case it is a
shorthand for the explicit context with identifier default.

The following:
x —> y @ default

Is equivalent to:
x => Q@ (y)

Tridash Tutorials 48 /72

When the context identifier is of the form when (type), that is omitting the context identifier and leaving only the failure type,
the explicit context with identifier default is, once again, assumed.

The following:
x —> y @ default when type

TS

Is equivalent to:
-> y @ when (type)

b

10 Node States

So far, we’ve seen that Tridash is good at producing an output, which is a function of a given input, and ensuring that it is always
synchronized with the input. What we haven’t seen, however, is mapping a previous output to a new output. In-fact, with the
tools introduced so far, this is impossible.

To be able to map a previous output to a new output, a binding has to be established in which the source is a function of the target
node. As an example, to implement a counter, intuitively we might do the following:

This does not work!!!
counter + 1 —-> counter

The problem here is that a change in the value of counter triggers a change in the value of counter, which triggers a further
change in the value of counter ad infinitum. What we require is a way to tell Tridash, that when the value of counter is
updated to counter + 1, it should not trigger another update to the value of counter + 1. We also need a way to specify
when we would like the value of counter to be updated to counter + 1, asupdating it only once is hardly useful.

10.1 Stateful Bindings

Node states allow us to control when the value of a node is updated, beyond the simple rule of whenever the value of one of its
dependency nodes changes. The target of a binding can have an explicit state associated with it, using the : : operator. In this
case the binding is referred to as a stateful binding.

Explicit state using :: operator

a —> b :: state-id

The left-hand side of the : : operator is the node and the right hand side is the state identifier, which is a symbol identifier
(similar to a context identifier). The result of this is that the binding a —> b only takes effect when b switches to the state with
identifier state-id. The emphasis is on switches as a change in the value of a will not automatically trigger a change in the
value of b. Only a change in the state of b will trigger a change in its value. This may seem counter-intuitive at first, however if
b was updated on every change in the value of a, and instead of a we have b + 1 we’ll end up with the same problem, as in the
previous section.

Important
Stateful bindings declared later in the source take priority over those declared earlier.

A node’s state is determined by the value of the special node /state (node) . Binding to it allows us to control a node’s state.
Example: Counter
counter + 1 -> counter :: increment
/state (counter) <-
case (

should-increment? : ' (increment),
' (default)

Tridash Tutorials 49/72

Tip
The ’ operator returns its argument as a literal symbol. ’ (id) returns the literal symbol id, whereas id on its own is a
reference to the value of the node with identifier 1 d. ¢

¢ This performs a similar function to Lisp’s quote or ’ operator

In this example, a binding counter + 1 —-> counter is established which only takes effect when counter switches to
the increment state.

The second declaration binds a case expression to the /state (counter) node, thus controlling the state of counter.
When should-increment? is true the value of the case expression, and thus the state of counter is increment,
otherwise it is default.

The result is that when the value of /state (counter) (the state of counter) is updated to increment, the value of
counter is updated to it’s previous value incremented by 1.

10.2 Interfacing with JavaScript

To provide a runnable example, we have to interface with JavaScript in order to hook into its event system. In the next major
release of Tridash, this wont be necessary.

This section will go over only the basics of interfacing with JavaScript, which are necessary for completing this tutorial. A full
in-depth tutorial on interfacing with JavaScript, will follow.

Tridash nodes are compiled to runtime node objects, which store the node’s value. To be able to reference a runtime node object
from JavaScript, the node has to be given an identifier with which it can be referenced. The public—-name attribute, if given,
determines the name of this identifier.

Once an identifier is given, it can be accessed as a member of the nodes property of the runtime module object. To access the
runtime module object of a compiled Tridash program, embedded in an HTML file, it needs to be given an identifier. The module
is then accessible via a global variable with that identifier. This is achieved using the module—-name output options.

Caution
Currently Tridash does not check whether multiple nodes are given the same public-name.

Example: Setting public-name identifier

/attribute (node, public-name, "aNode")

Example: Referencing the runtime node object in JavaScript

// Assuming runtime module is stored in variable mod
var node = mod.nodes["aNode"];

// or equivalently if the public-name is a valid JS variable name
var node = mod.nodes.aNode;

Once a reference is obtained to the runtime node object, the node’s value can be set using the set_value method, which takes
the value as an argument.

Example: Setting Node Value from JavaScript

node.set_value(1l);

It is important, however, that if set_value will be called on a runtime node object, the node is marked as an input node, by
setting its input attribute to true.

Tridash Tutorials 50/72

/attribute (node, input, True)

Caution

Not every Tridash node corresponds to an actual runtime node object, due to some intermediate nodes being optimized
out by the compiler. The only nodes, for which it is guaranteed that a runtime node object is created, are input nodes
and nodes with no observers, which are assumed to represent output nodes.

10.3 Example: Counter Application

In this section we’ll build a very simple application consisting of a counter which is incremented when a button is pressed.

Let’s start off with the Tridash binding declarations. We’ve in-fact already written the bulk of the code in the previous example,
which we can simply copy into our new application.

counter + 1 —-> counter :: increment

/state (counter) <-
case (
should-increment? : ' (increment),
' (default)

The node counter stores the value of the counter which is incremented when should-increment? is true. We’ll add the
attributes which are necessary in order to be able to set the value of should-increment? from JavaScript, namely we need
to set the public—name identifier and mark it as an input node.

/attribute (should-increment?, input, True)
/attribute (should-increment?, public-name, "should_increment")

We’ll allow the user to set/reset the value of the counter by binding a start node to an input field. We’ll bind start directly
to counter and give it an initial value of 0.

start —-> counter
0 —-> start

Now let’s define the user interface. We need a text input field for entering the initial value for the counter, which will be bound
to start and an increment button. The value of the counter will be displayed below the counter.

ui.html

<div><label>Start: <input value="<?@ to-int (start) ?>"/></label></div>
<div><button id="increment">Increment</button></div>

<hr/>

<div>Counter: <?@ counter ?></div>

Note
The HTML boilerplate is not shown.

We’ve given the Increment button the ID increment so that we can attach an event listener to its click event. We’ll do so using
the following JavaScript code, in a script tag which should be added below the element where the counter is displayed:

Tridash Tutorials 51/72

<script>
document .addEventListener ("DOMContentLoaded", async () => {
const module = await mod;
const increment = document.getElementById('increment');

const node_increment = module.nodes.should_increment;

increment.addEventListener ('click', function() {
node_increment.set_value (true);
node_increment.set_value (false);
1)
}) i
</script>

A couple of things to note:

* We’ve assumed the runtime module object is stored in the global variable mod. The runtime module object identifier will be
set with the module-name output option.

* The entire code is wrapped in an event handler for the DOMContent Loaded event to ensure that it is run after the JavaScript
code which assigns the runtime module object to mod.

* await is applied on the module object mod, inside an async callback function, since the module itself may be created
asynchronously. This is the case when the compilation target is WebAssembly (wasm32).

The callback function, run after all HTML elements and scripts have been loaded, does the following:

¢ Obtains a reference to the HTML element with ID increment.

* Obtains a reference to the should-increment ? node which was given a public-name of should_increment.
The remainder of the function attaches a listener, for the click event, on the Increment button. In that listener we first set the value
of the should-increment ? node to true, then immediately afterwards we set it to false again.

Setting the value of should-increment? to true, causes the state of counter to change to increment. Setting it back to
false again causes the state to change to default.

Note

In a future release, when the HTML library is complete, a subnode c1icked?, of the element node, will be available which
will automatically be set to true when the button is clicked and to false when it is released. Thus the above JavaScript code
wont be necessary.

Change the build configuration file (build.yml) to the following:
build.yml

sources:
- path: ui.html
node—name: ui

output:
path: app.html
type: html

main-ui: ui
module—-name: mod

The addition of the line module—-name: mod sets the module—name output option to mod, which is the identifier of the
variable in which the runtime module object will be stored.

Build and run the application, and press the increment button a few times:

Tridash Tutorials

52/72

Counter

Start: o

Increment

Counter: 1

Counter

Start: o

Increment

Counter: 2

The displayed value, for the counter, is incremented after each press.

Now enter a value in the Start field to reset the counter, and then press the increment button again:

Counter

Start: s

Increment

Counter: 5

Counter

Start: 5

Increment

Counter: 6

Tridash Tutorials 53/72

The counter is reset to the value entered in the Start field. Pressing increment afterwards increments the new counter value.

10.4 State Transitions
Let’s do a little experiment, comment out the line, in the click event handler, which sets the value of the should-increment? node
to false, i.e. comment out the following:

node_increment.set_value (false);

What do you expect to happen? Initially, we might think that since the should-increment ? node is not being reset to false,
the state of counter is not being reset to default. The state of counter will thus switch to increment once, after which,
there are no further state changes. The result is that the counter will only be incremented the first time the increment button is
pressed.

Let’s try it. Build and run the application and press the increment button twice.

Counter

Start: o

Increment

Counter: 2

What happened? The counter carries on incrementing after the first button press. Why?
The declaration:

counter + 1 —-> counter :: increment

states that the binding should only take effect when the state of counter switches to the increment state. Switching from the
increment state to the increment state is still considered as switching to the increment state, even though the new state
is identical to the previous state. This is due to the fact that each time we’re setting the value of the should-increment?
node to true, we're triggering a change in the value of the node /state (counter) and thus the state of counter, even
though the new value of should-increment? is identical to its previous value.

The above declaration should thus be thought of as declaring a binding which takes effect whenever counter switches from
any state, including increment, to the increment state.

To fix this issue we can specify an explicit from state. When specified, the binding only takes effect when the state of the node
changes from the from state to the fo state. This is specified using the following syntax:

Node State Binding with Explicit From State
a —> b :: previous => next
When the state identifier is a functor of the form previous => next, previous is interpreted as the identifier of the from

state and next is interpreted as the identifier of the fo state.

To achieve the intuitive behaviour we can limit the binding counter + 1 -> counter to only take effect when the state of
counter transitions from default to increment. Replace the binding declaration of counter with the following:

counter + 1 -> counter :: default => increment

Tridash Tutorials 54 /72

This implementation will, however, require two initial button presses before the counter starts incrementing. This is due to the
fact that we haven’t given counter an initial state. The first press causes it to change to increment, and then back to default,
however since it is not a change from default to increment, the binding does not take effect. We can fix this by giving
/state (counter) aninitial value of default.

Setting Initial State

' (default) —-> /state (counter)

Now the counter starts incrementing after the first press.

Let’s repeat the experiment on this new implementation, comment out the line, in the JavaScript script tag, which sets the value
of should-increment? to false. The counter should only increment the first time the Increment button is pressed.

This example served to demonstrate the difference between a stateful binding with and without a from state. However, in this
example, there is no value in specifying a from state, as the previous example, without a from state, was simpler and performed
the same function.

10.5 Example: Alternating Increment Button

In this example, we’ll build a silly application in which the Increment button, the button which actually increments the counter,
alternates between two buttons. The goal of this example is to demonstrate what can be done with stateful bindings with a from
state that cannot be done with stateful bindings without a from state.

We’ll start off with a similar interface to the previous counter application, however with two increment buttons.
ui.html

<hl>Counter</hl>
<div><label>Start: <input value="<?@ to-int (start) ?>"/></label></div>
<div>
<button id="incrementl">Increment 1</button>
<button id="increment2">Increment 2</button>
</div>
<hr/>
<div>Counter: <?@ counter ?></div>

Both button’s have been given ID’s as we’ll need to attach event listeners to both buttons, in JavaScript.

We’ll need two nodes clickedl? and clicked2? which change to true when the first and second buttons are clicked,
respectively. The values of these nodes will have to be set via JavaScript, thus we’ll mark them as input nodes and set their
public—name attributes:

/attribute (clickedl?, input, True)
/attribute (clickedl?, public-name, "clickedl");

/attribute (clicked2?, input, True)
/attribute (clicked2?, public-name, "clicked2");

The following JavaScript code attaches event listeners for the clicked events, of both buttons, which simply set the value of the
corresponding clicked? node to true and them immediately to false, again.

document .addEventListener ("DOMContentLoaded", async () => {
const module = await mod;
const incrementl = document.getElementById('incrementl');
const increment2 = document.getElementById('increment2');
const clickedl = module.nodes.clickedl;

const clicked2 = module.nodes.clicked?2;

incrementl.addEventListener ('click', function() {

Tridash Tutorials 55/72

clickedl.set_value (true);
clickedl.set_value (false);
})i

increment2.addEventListener ('click', function() {
clicked2.set_value (true);
clicked2.set_value (false);
1)
1)

‘We’ll need two states for the counter node:
incrementl

Corresponds to the first button being clicked last.
increment2

Corresponds to the second button being clicked last.

The value of counter should be incremented only when its state switches from one state to the other, i.e. the button, which was
clicked, is different from the previous button to be clicked. This can be achieved using two stateful bindings which take effect
during the state transitions incrementl => increment2,increment2 => incrementl.

counter + 1 —-> counter :: incrementl => increment2
counter + 1 —-> counter :: increment2 => incrementl
Tip

counter + 1 can be refactored into a separate node to avoid having to type it out twice.

counter will retain its previous value during any other state transition.

We need to set counter’s state, to incrementl or increment?2, based on which button was clicked last. To achieve that
we can exploit the fact that each explicit binding to a node, without an explicit context, results in the creation of a new context.
When the value of the source node, of the binding, changes, the binding context is activated.

We know that the value of clickedl changes to true, and then to false, again, when the first button is clicked. The same is
true for c1icked?2 when the second button is pressed. We want the state of counter (/state (counter)) to be bound to
the literal symbol increment1, when the value of c1ickedl changes regardless of what that value is. For that, we can use
the utility ! — meta-node, introduced in Section 9.3, which returns the value of its second argument if its first argument does not
evaluate to a failure.

The following are the binding declarations which set the state of counter.

clickedl? !- ' (incrementl) -> /state (counter)
clicked2? !- '(increment2) -> /state (counter)
Note
The sole purpose of the !— operator is to force the value of /state (counter) to be updated whenever the value

clickedl or clicked2 changes.

To make it obvious which button should be clicked, we’ll make the button which increments the counter change to green. We’ll
bind each button’s background color to "green™" if the other button was the last button to be pressed, and "gray" if it was the
last button to be pressed. This is achieved with the following:

Tridash Tutorials 56/72

incrementl <- /state (counter) = ' (incrementl)
increment2 <- /state (counter) = ' (increment2)

case (increment2 : "green", "gray") ->
self.incrementl.style.backgroundColor

case (incrementl : "green", "gray") ->
self.increment2.style.backgroundColor

Note
We’re comparing the state of counter directly to determine which button was pressed last.

Finally, let’s make the initial state of counter, increment?2 so that pushing on the first button, increments the counter.

Build and run the application. Initially you should see something similar to the following:

Counter

Start: o

Counter: 0

Click on the green Increment 1 button:

Counter

Start: o

Counter: 1

The counter is incremented by one, and the button changes to grey with the other button changing to green. Clicking on the same,
now grey, button will not affect the value of the counter.

Click on the green Increment 2 button:

Tridash Tutorials 57172

Counter

Start: o

Counter: 2

The counter is incremented once again, and button Increment 1 changes back to green with button Increment 2 changing back to
grey.

Just to make sure everything works properly let’s reset the counter and push the green button to increment it.

Counter

Start: 10|

Counter: 10

Counter

Start: 10

Counter: 11

Everything works as expected. The state of counter does not affect the binding start —> counter as it is a stateless,
without an explicit state specified, binding.

10.6 Exercises
Try out the following as an exercise:

* Change the previous application such that clicking on the grey button, i.e. the button which does not increment the counter,
decrements the counter.

* Implement a toggle button of which the background color, and text, changes when pressed.

Tridash Tutorials 58/72

11 List Processing

This tutorial is an introduction to processing lists of data. Lists are conceptually represented as a linked list of nodes in which
the head of the node stores the list element and the tail stores the next node, i.e. the remainder, of the list. The meta-nodes head
and tail, from the core module, return the head and tail of a list node respectively.

Note

This is only a conceptual view as not all lists are necessarily implemented as linked lists. Some lists are actually implemented
as contiguous arrays which provide a linked list interface. In the current release, only linked lists can be created explicitly,
however functionality for creating arrays will be added in a future release.

The empty list is represented by the value of the node Empty. The tail of the last node in a list is bound to this node.

Tip
The node Empty! is bound to a failure of type Empty, which is returned when attempting to access the head or tail of an
empty list.

11.1 Creating Lists

The cons meta-node creates a list node, taking the value for the head and the tail as arguments. This can be used to append
to the front of an existing list:

Create a list of 1 element, by appending to the front of the empty
list
11 <- cons(a, Empty)

Append to front of 11, creating a list of 2 elements
12 <- cons (b, 11)

The 11ist meta-node takes a variable number of arguments and returns a list containing the values of the arguments as elements.

Create list with elements: 1, 2, 3
1 <- list(1, 2, 3)

The 11ist meta-node, also taking a variable number of arguments, is used to prepend a number of elements to the front of a
list. The last argument is interpreted as a list with the remaining arguments prepended to the front of it.

Create list with 1 and 2 prepended to the front of 11
12 <- list* (1, 2, 11)

11.2 Higher-Order Meta-Nodes

Meta-Nodes can be passed to other meta-nodes as arguments, or bound to ordinary nodes, in which case the function of the
meta-node is referenced.

A node can appear as the operator in a functor node in which case the function, of which the reference is stored in the node’s
value, is applied on the arguments. If the node’s value is not a reference to function or the function is applied on an incorrect
number of arguments, the result is a failure value.

Example
call(f, arg) : f(arg)
func(x) : x

f <- func
result <- call(f, vy)

Tridash Tutorials 59/72

In this example the call meta-node takes two arguments and returns the result of applying the first argument £ on the second
argument arg. The node £ is bound to a reference to the function of the meta-node func, which is then passed to the call
meta-node.

11.2.1 Outer Node References

An interesting aspect of higher-order programming in Tridash is that when referencing a meta-node as a value, which references
the values of nodes declared in the global scope, a binding is established between the referenced nodes and meta-node reference.
A binding is also established between the default values of optional arguments, in the case that they are references to other nodes,
and the meta-node reference.

Example

Increment “x° by the value of the global node “delta
increment (x) : x + delta

call(f, arg) : f(arqg)

result <- call (increment, n)

The increment meta-node references the value of the global delta node. The function of the increment meta-node is
referenced by the node call (increment, n),thusabinding is established between deltaand call (increment, n).
The result is that whenever the value of delta is changed, the value of call (increment, n) isupdated.

Let’s demonstrate this with a simple application. Create a ui . html file containing the above code in a Tridash code tag and the
following interface in the HTML body.

<div><label>N:
<input value="<?@ to-int (n) ?>"/></label></div>
<div><label>Delta:
<input value="<?@ to-int (delta) ?2?>"/></label></div>
<hr/>

<div>Result: <?Q@ result ?></div>

Build and run the application and enter a value for N and Delta.

N:
5

Delta:
"

Result: 6

The result of the value entered for N plus Delta is displayed, nothing new here.

Now change the value for Delta:

N:
5
Delta:
3l

Result: 8

Tridash Tutorials 60/72

The result is updated even though there is no direct instance of increment but rather a reference to the function of increment,
which is passed to the call meta-node. This demonstrates that an implicit binding delta —-> call (increment, n) is
created due to increment referencing the value of delta in its definition.

11.2.2 Higher-Order Meta-Nodes in List Processing

Higher-order meta-nodes are extremely useful for processing lists. There are many list processing utility meta-nodes, in the
core module, which take a reference to a meta-node as an argument, and perform an operation on the list using the meta-node.
Here are few examples:

map(f, list) The map meta-node takes a function £ and a list as arguments and returns a new list with the result of the applying
the function on each element of the list.

Example: map

1 <- list (1, 2, 3)

1+(n) : n + 1
map (1+, 1) # Result: list (2, 4, 6)

The meta-node 1+ returns its argument plus one. 1+ is applied on each element of list 1, containing the elements 1, 2, 3, using
the map meta-node. The result is the list containing the elements 2, 4, 6, which is each element of the original list plus one.

foldl(f, list) The foldl meta-node reduces a list to a single value by applying a function on the first two elements of the list,
and then applies the function again on the result of the previous application and the next element. This is repeated until there are
no more elements in the list.

Example: foldl

1 <= 1list (1, 2, 3)
foldl(+, 1) # Result ((1 + 2) + 3) = 6

In this example the + function is applied on the list containing the elements 1, 2, 3. foldl first applies + on the first two
elements of the list (1, 2) producing the result 3. The + function is then applied on the result 3 and the next element of the list 3,
producing the result 6.

The foldl’ (x, £, list) function is similar to foldl except the function f is first applied on x and the first element of
the list, rather than the first two elements of the list.

The foldr (£, list) function is similar to foldl except the reduction starts from the last two elements of the list and
proceeds backwards until the first element.

Some other useful functions are:

filter (£, list)
Returns a list containing only those elements of 1ist for which £ returns true.

every? (£, list)
Returns true if £ returns true for every element of 1ist.

some? (£, list)
Returns true if £ returns true for at least one element of 1ist.

not—-any? (£, list)
Returns true if £ returns false for all elements of 1ist.

not-every? (£, list)
Returns true if £ returns false for at least one element of 1ist.

Tridash Tutorials 61/72

11.3 Example: Message List

We’ll create a simple application consisting of an input field and an Add Message button. When the Add Message button is
pressed, the message entered in the input field is appended to the list of messages, which are displayed below the button.

Start off with the following user interface:
ui.html

<div><label>New Message: <input value="<?Q@ new-message ?2>"/></label></div>
<div><button id="add">Add Message</button></div>

<hr/>

<pre><?@ messages ?></pre>

The value of the New Message input field is bound to the node new-message. The value of the messages node is bound to
the contents of a pre tag. This node will store the list of messages in a single formatted string.

The button is given the id add so that we can attach an event listener for its click event, in JavaScript:
Add the following code, which is similar to the code seen in Section 10, to a script tag below the pre tag:

document .addEventListener ("DOMContentLoaded", async () => {
const module = await mod;

const add = document.getElementById('add');
const clicked = module.nodes.clicked;

add.addEventListener ('click', function() {
clicked.set_value (true);
clicked.set_value(false);
1) i
1) i

The value of the node with the public identifier c1icked, which is the add-clicked? node, is set to true and the immediately
to false when the button is clicked. Add the following attribute declarations for the add—-clicked? node:

/attribute (add-clicked?, input, True)
/attribute (add-clicked?, public-name, "clicked")

We’ll need a node to store the list of messages. Let’s call it message-11ist and set its initial value to the empty list.

message—-list <- Empty

The new message entered, bound to new-message, has to be added to the end of message-1ist. The append meta-node
takes two lists and appends the second list at the end of the first list. Thus to append a single item, we’ll pass a list of that one
item to append.

append (message—-list, list (new-message))

We want the value of new-message to be appended to message—11ist when the Add Message button is clicked. This can be
achieved with a stateful binding to message—1ist in the add—-new state.

append (message—-list, list (new-message)) —->
message—list :: add-new

The state of message—11ist should be set to add—new when the Add Message Button is pressed. The add-clicked? node
is true when the button is being pressed and false otherwise, thus the state of message—1ist can be set with the following
case expression:

case (
add-clicked? : ' (add—-new),
' (default)

) —> /state (message-list)

Tridash Tutorials 62/72

We have completed the functionality for adding a message to the end of the messages list. All that remains is to format that list
into a string which is displayed to the user.

We need a single string containing each message followed by a newline. We’ll write a format-message meta-node which
appends a line break to a message.

Meta-Node format-message

format-message (message)
format ("%$s\n", message)

format-message uses the format meta-node, introduced in Section 4, to produce a string containing the message, replacing
the % s placeholder, followed by a line break.

Tip
\n in a string is an escape sequence for a line break. Other escape sequences are: \ r—carriage return, \t —tab and
\u { <code>} — Unicode character with code <code>.

To format each message, we’ll apply format-message on each message in message—11st using map.

formatted-messages <- map (format-message, message-list)

Finally, to concatenate the formatted messages into a single string, we’ll use the st ring-concat meta-node, which takes two
strings as arguments and returns the concatenation of both strings. We’ll need to apply st ring—conat on each element in
formatted-messages in turn, accumulating the result in a single string. We can do that using the fol1d1 node, passing in
string—-concat as the reduction function:

messages <- foldl(string-concat, formatted-messages)

The resulting string is bound to me ssages which is displayed in the pre (preformatted) tag, below the Add Message button.

Build and run the application, using the build configuration file from Section 10.3. Enter a message and press the Add Message
button.

Message List

New Message: Hello Werld!
Add Message

Hello World!

The message is displayed.

Now enter a new message and click the Add Message button.

Tridash Tutorials 63/72

Message List

New Message: Hithere, how you doing
Add Message

Hello World!
Hi there, how yvou doing?

The message is displayed below the old message.

12 Modules And Organization

Up till this point we haven’t given much thought as to how our source code is organized. Instead we’ve crammed all our code
in a Tridash code tag inside a single ui .html file. This strategy obviously wont scale for larger applications. Ideally we’d like
to have separation of concerns with our application divided into multiple source files, each containing the code implementing a
separate component of the application. The ui . html should ideally contain a minimal amount of Tridash code, limited only to
inline node references and bindings directly related to the presentation logic. The core application logic should be in a separate
source file.

In this tutorial we’ll take the Adding Numbers application, as it is at the end of Section 9, and reorganize its source code.

12.1 Multiple Source Files

The simplest form of code organization is splitting up the application into multiple source files. Source files containing only
Tridash code are given the extension t rd.

Let’s extract the validation logic in a separate validation. trd file. This includes the meta-nodes validate, valid-int
and the Negat ive—Number failure type.

validation.trd

/import (core)

Negative-Number <- & (Negative-Number)
Negative-Number! <- fail (Negative—-Number)

validate (x)
case (
x >= 0 : x,
Negative—-Number!

)

valid-int (value) : {
x <— 1int (value)
validate (x)

}

/attribute (valid-int, target-node, valid-int)

Tridash Tutorials 64/72

Note
We've kept the /import (core) declaration at the top of the file.

The application logic simply consists of the definition of the error-message meta-node, which is responsible for choosing
an appropriate error message, the computation of the sum, and the setting of the initial values for a and b.

Let’s place this in a separate source file called app .t rd
app.trd

/import (core)

error—-message (value) : {
value !'- "" -—>
Q (self)

"Not a valid number!" ->
self @ when(Invalid-Integer)

"Number must be greater than or equal to 0!" —>
self @ when (Negative-Number)

sum <- a + b

0 -> a
0 -> b
Note

We’'ve kept the /import (core) declaration at the top of the file in case we want this file to be processed first by the compiler.
If we know this file will be processed after validation.trd, which already contains an /import (core), declaration we
can omit it.

Note
We’ve bound the sum of a and b to node sum, in order to avoid placing application logic in inline node declarations.

All that’s left in the ui.html file is the user interface elements and the inline bindings to the nodes a, b, sum and the
error-message instances, which display the error messages.

ui.html

<!doctype html>
<html>
<head>
<title>Adding Numbers</title>
</head>
<body>
<h1l>Adding Numbers</hl>
<div>
<label>A: <input id="a" value="<?@ valid-int (a) ?>"/></label>
<?@ error-message (a) ?>
</div>
<div>
<label>B: <input id="b" value="<?@ valid-int (b) ?>"/></label>
<?@ error-message (b) ?>
</div>
<hr/>

Tridash Tutorials 65/72

<div>A + B = <?@ sum ?></div>
</body>
</html>

12.1.1 Building

To build an application consisting of multiple source files, the source files are simply listed, under the sources entry, of the
build configuration file. Modify the build. yml file to the following:

build.yml

sources:
- validation.trd
- app.trd
- path: ui.html
node—-name: ui

output:
path: app.html
type: html

main-ui: ui

Note
The source files are processed in the order they are listed.

Since there are no processing options for validation.trd and app.trd, we’ve listed the paths to the files directly rather
than in the path entry of a dictionary.

Tip
To build entirely from the command-line, simply list the files, in the order they are to be processed, after t ridashc.
The following is equivalent to the build configuration file

tridashc validation.trd app.trd path : node-name=ui.html \
-0 path.html -p type=html -p main-ui=ui

12.2 Modules In Depth

Whilst separating the application into multiple source files, grouping related components in a single file, is a significant cleanup,
it would be even better if the nodes could be grouped into different namespaces based on their purpose, for example utility,
application logic and ui. This would allow us to use only the nodes from the utility namespace, without having the rest of the
utility nodes clash (i.e. have the same identifiers) with the application logic nodes. Whilst in this application there are no clashes,
keeping the nodes in separate namespaces allows us to use the same validation.trd file in another application without the
fear that some node is going to clash with other nodes in the application.

Modules are a means of separating nodes into different namespaces, where each module is a namespace in which nodes are
contained. A node with identifier x in module mod1 is a distinct node from the node x in mod2, even though the two nodes
share the same identifier.

Note
We've already made use of the core module throughout these tutorials.

Tridash Tutorials 66/72

12.2.1 Creating Modules

Modules are created with the /module operator which has the following syntax:
/module Operator Syntax

/module (module—name)

This indicates that all node references, in the declarations following the /module declaration, will occur in the module with
identifier module-name. Remember that nodes are created the first time they are referenced, thus if a node is referenced which
is not in the module, it is created and added to the module.

Example

/module (modl)
x —> nodel

/module (mod2)
x —> node2

The first reference to the node x occurs in module mod1 thus a node x is added to mod1l. The second referenced occurs in
module mod?2 thus the node is added to mod2. The two nodes are distinct even though they share the same identifier.

If no module is specified the node references occur in a nameless init module. The current module is reset to the init module
prior to processing each source file.

Important
@ Module identifiers are distinct from node identifiers, thus a node mod will not clash with a module mod unless the
module is added as a node to the module containing the node mod.

12.2.2 Using Modules

This is great but it is of little use if you can’t reference a node that is declared in a different module from the current module.
The /use operator allows nodes in a module to be referenced as subnodes of a node with same identifier as the module identifier.
/use Operator Syntax

/use (modl)

This adds a node mod1 to the module in which the declaration occurs. Then you can reference a node x in mod1 as a subnode of
modl, modl . x. modl is, however, a pseudo-node as its value cannot be referenced nor can bindings involving it be established.
It only serves as a means to reference nodes in the module mod1.

Tip
To use a meta-node f declared in mod1, simply reference it as a subnode of mod1l, modl. f (a, b).

This greatly increases the functionality of modules however sometimes it may become annoying to have to type out the full name
of the module over and over again, for each node. You can try keeping the module names short however then you run the risk
of module name collisions. The /use-as operator allows you to control the identifier of the pseudo-node, that is created in the
current module, with which nodes in the module can be referenced.

/use-as Operator Syntax

/use-as (modl, m)

This creates a pseudo-node with identifier m, with which nodes in mod1 can be referenced. Nodes in mod1 can then be referenced
as subnodes of m.

Tridash Tutorials 67/72

Note
Both /use and /use-as will trigger a compilation error if the pseudo-node identifier already names a node in the current
module.

12.2.3 Importing Nodes

Sometimes you would like to explicitly add a node in another module to the current module, so that you don’t have to reference

it as a subnode of the module. The /import operator allows you to do this.

It has two forms:

* A short form taking only the module as an argument, in which case all nodes exported from the module are added to the current
module.

* A long form in which the first argument is the module and the following arguments are the individual nodes to import from the
module. Only the nodes listed are imported.

Example

Short form: Import all nodes exported from modl

/import (modl)

Long form: Only import nodes x, y, z
/import (modl, x, y, z)

Important
The short form only imports those nodes which are exported from the module not all nodes.

Note
The long form allows you to choose which nodes are imported into the current module. You can list any node in the module,
not just an exported node.

/import also has a side-effect in that if an imported node, whether imported by the long or short form, is registered as an infix
operator, its entry in the operator table is copied over to the operator table of the current module so that it can also be written in
infix position in the current module.

Example
@ is a meta—node that is registered as an infix operator

/import (modl, @)

It can be also be placed in infix position in the current module
X @ vy

You cannot place a node in infix position if it is referenced as a subnode of the module.

/use (modl)

The following will not compile as you cannot place a subnode in
infix position.

x modl.@ y

Instead you have to write it in prefix notation:
modl.@(x, Vy)

Tridash Tutorials 68/72

12.2.4 Exporting Nodes
We mentioned that the short form of the /import operator imports all nodes which are exported from the module. Nodes are
exported from the current module using the /export operator.

/module (modl)

Exports nodes x, y and z from the current module
/export (x, y, z)

Importing mod1 by the short form, /import (modl), will import nodes x, v and z into the module.

/export can take any number of arguments and multiple /export declarations will result in the nodes listed in each declara-
tion being exported.

12.2.5 Directly Reference Nodes in Another Module

The /in operator references a node in another module, for which a symbol has not been created in the current module using
/use or /use-as.

/in Operator Syntax

/in (module, node)

where module is the name of the module, as declared by the /module operator, and node is the node expression which is
processed in module.

This operator is most useful when writing macros, however there is rarely a need for it when writing code directly as whatever
can be achieved with /in can be achieved in a more readable manner with /use, /use—as or /import.

12.3 Adding Modularity to Adding Numbers
Let’s group the nodes declared in the validation.trd file, i.e. the nodes related to the input validation logic into a module
called validation. To do that simply add the declaration /module (validation) to the top of the file.

We mainly require the valid—-int meta-node and Negat ive-Number failure type node to be referenced outside the validation
module, thus we’ll export those nodes using the declaration /export (valid-int, Negative-Number).

Note
We haven't exported validate and Negative-Number! as those are only used in the implementation of valid-int,
and are not used outside the validation. trd file.

validation.trd

/module (validation)
/import (core)

/export (valid-int, Negative-Number)

We’ll group the main application logic into a sum—-app module, by adding the declaration /module (sum-app) to the top of
the app . t rd file. The nodes exported from the validation module have to be imported in this module, by adding an import
declaration for the module after the import declaration for the core module. We’ll contain the user interface in this module, thus
we wont be needing to export any nodes from it.

app.trd

Tridash Tutorials 69/72

/module (sum—app)

/import (core)
/import (validation)

Finally, we have to add a Tridash code tag to the top of the ui.html file, which changes the module to sum—app, since the
sum and error—-message nodes are contained in it.

ui.html

<? /module (sum-app) °?>
<!doctype html>
<html>
<head>
<title>Adding Numbers</title>
</head>
<body>
<h1>Adding Numbers</hl>
<div>
<label>A: <input id="a" value="<?@ valid-int (a) ?>"/></label>
<?@ error-message (a) ?>
</div>
<div>
<label>B: <input id="b" value="<?Q@ valid-int (b) ?>"/></label>
<?@ error-message (b) ?>
</div>
<hr/>
<div>A + B = <?@ sum ?></div>
</body>
</html>

We’ve successfully divided our source code into multiple modules, based on the purpose of the nodes defined in it. However,
the node which references the contents of the ui.html file is still added to the init module. Whilst in this application it doesn’t
pose a problem as there is no other node with identifier ui in the init module, it may become a problem if there is a need to
reference HTML elements from within the app . trd file. Remember HTML elements can only be referenced as subnodes of
self, within the HTML file itself. Outside the file they have to be referenced as subnodes of the node which references the
contents of the HTML file.

In order for the ui node to be created in a module other than init, the node—name option has to be of the following form
module.name, where module is the module in which the node should be created and name is the name of the node. The
same syntax applies in the main-ui output option.

Change the build.yml file to the following:
build.yml

sources:
- util.trd
- app.trd
- path: ui.html
node-name: sum-—-app.ui

output:
path: app.html
type: html

main-ui: sum-app.ui

With this you can now reference HTML elements, from app . t rd, as subnodes of the ui node.

Build and run the application. You wont see any new features however we’ve significantly improved the organization of the code
and thereby improved the maintainability of the application.

Tridash Tutorials 70/72

Tip
You wouldn’t typically divide an application this small into multiple modules, however we’ve done so here in order to demonstrate
how it is done.

12.4 Infix Operators

We have referred to some meta-nodes as being registered as infix operators. This allows them to be placed in infix position
instead of prefix position. It turns out you can do the same for your own nodes. This section describes how.

12.4.1 Precedence and Associativity Basics

Each module has an operator table, which contains the identifiers of all nodes which can be placed in infix position as well as
their precedence and associativity. The precedence is a number which controls the priority with which operands are grouped with
infix operators, in an expression containing multiple different infix operators. Higher numbers indicate greater precedence.

The multiplication » operator has a greater precedence (200), than the addition + operator (100) thus arguments will be grouped
with the multiplication operator first and then the addition operator.

The following infix expression:

X + vy *x z

is parsed to the following expression in prefix notation:

Notice that the » operator is grouped with the operands y and z first, and then x and = (y, z) are grouped with the + operator.
This is due to + having a greater precedence than +.

To achieve the following grouping:

*(+(x, y), 2z)

enclose x + vy in parenthesis:

(x + vy) * z

Associativity controls the grouping of operands in an expression containing multiple instances of the same infix operator. The +
operator has left associativity.

Thus the following infix expression:

X+ vy + z

is parsed to the following expression in prefix notation:

t(+(x, ¥), 2)

i.e. it is equivalent to

(x +vy) + z

If the + operator were to have right associativity, the expression would be parsed to the following:

+(x, +(y, z))

Below is a table showing the precedence and associativity of some of the builtin operators.

Tridash Tutorials 71/72

Operator Precedence | Associativity
-> 10 | right
<- 10 | left
- 15 | right
or 20 | left
and 25 | left
+ 100 | left
- 100 | left

* 200 | left
/ 200 | left

Tip

Visit the modules/core/operators. trd file of your Tridash installation to see the full list.

12.4.2 Registering your own infix operators

Node identifiers can be registered as infix operators with the special /operator declaration.
/operator Syntax

/operator (id, precedence, [left | right])

The first argument is the identifier, the second argument is the operator precedence as a number and the final argument is the
symbol left or right for left or right associativity. If the third argument is omitted it defaults to left.

This declaration adds an infix operator to the operator table of the current module. In the declarations, following the /operator
declaration, id can be placed in infix position.

Note
id can be any valid identifier, not just an identifier consisting only of special symbols. However, as a result, a space is required
in between the operator and its operands.

It is not checked whether id actually names an existing node, however using it in infix position only makes sense if id names a
meta-node.

If the node with identifier 1d is imported into another module, its entry in the operator table, of the module from which it is
imported, is copied into the operator table of the module into which it is imported.

The precedence and associativity of existing operators can be changed by an /operator declaration, however only the operator
table of the current module is changed even if the operator is an imported node.

12.4.3 Example: Infix add Operator

To demonstrate how you would go about registering a meta-node as an infix operator, we’ll write an add meta-node which
computes the sum of two numbers, register it as an infix operator and replace a + b with a add b in the Adding Numbers
Application.

Note
There is no value in writing a new meta-node which is simply a wrapper over a builtin meta-node, and registering it as an infix
operator. The purpose of this tutorial is simply to demonstrate how you would register your own meta-node as an infix operator.

We’ll first define add and then register it as an infix operator with precedence 100 and /eft associativity which is the same as the
builtin + operator.

Add the following somewhere near the top in app . t rd:

Tridash Tutorials 72172

add(a, b) : a + b

/operator (add, 100, left)

Now change the binding declaration to sum with the following:

sum <- a add b

That’s it you’ve now added your own infix operator to the language.

13 What’s Next?

You’ve completed the introductory tutorials which introduce the features of the language. More tutorials will follow shortly, on
more advanced topics such as the following:

e Pattern Matching
e String processing
* Writing your own Macros
* Foreign Function Interface

* Controlling Optimizations

Tridash is still in the proof of concept phase, but is slowly advancing to the point where it is fully usable for real-world applica-
tions. There are still corner cases which need to be cleaned up, and features, necessary for real world applications, to implement.
The next major release will feature the following:

* A complete HTML library allowing for directly hooking into events, from Tridash, and DOM manipulation

 Standard library with more math functions, string manipulation functions and other data structures besides lists.

	Hello Node
	Nodes
	First Application
	Building
	Running The Application

	Inline Node Declarations
	Two-Way Bindings
	Example Application

	Functional Bindings
	Example Application: Adding Numbers
	Build Configuration File
	Running the Application

	Binding to Functor Nodes

	Conditional Bindings
	Case Operator
	Example 1: Maximum of Two Numbers
	Example 2: Sum Limit
	Improvements

	Writing your own Functions
	Definition Operator
	Node self
	Optional Arguments
	Recursive Meta-Nodes
	Nested Meta-Nodes
	Local Nodes
	Referencing Outer Nodes
	Fun Example: Simple Meter

	Subnodes
	Example: Color Object

	Error Handling with Failure Values
	Invalid Input
	Failure Values
	Handling Failures
	Cleaning Up

	Initial Values
	Exercise

	Failure Types
	Identifying the cause of Failures
	Example: Checking Failure type in Adding Numbers Application
	Creating Failure Values
	Example: Positive Numbers Only

	Proper Failure Types

	Target Node Transforms
	Node Attributes
	Attribute target-node
	Target-Node for own Meta-Nodes

	Contexts
	Explicit Contexts
	Handling Failures with Explicit Contexts
	Improved Error Handling in Adding Numbers
	Concise Syntax

	Node States
	Stateful Bindings
	Interfacing with JavaScript
	Example: Counter Application
	State Transitions
	Example: Alternating Increment Button
	Exercises

	List Processing
	Creating Lists
	Higher-Order Meta-Nodes
	Outer Node References
	Higher-Order Meta-Nodes in List Processing

	Example: Message List

	Modules And Organization
	Multiple Source Files
	Building

	Modules In Depth
	Creating Modules
	Using Modules
	Importing Nodes
	Exporting Nodes
	Directly Reference Nodes in Another Module

	Adding Modularity to Adding Numbers
	Infix Operators
	Precedence and Associativity Basics
	Registering your own infix operators
	Example: Infix add Operator

	What's Next?

