
Tridash 0.10 Reference Manual i

Tridash 0.10 Reference Manual

Tridash 0.10 Reference Manual ii

Contents

1 Syntax 1

1.1 Atom Nodes . 1

1.2 Functors . 2

1.3 Node Lists . 3

1.4 Literals . 3

1.4.1 Numbers . 3

1.4.2 Strings . 4

2 Nodes 5

2.1 Glossary . 5

2.2 Declaring Nodes . 5

2.3 Declaring Bindings . 6

2.4 Propagation of Changes . 7

2.5 Evaluation Strategy . 8

2.6 Contexts . 8

2.6.1 Two-Way Bindings . 9

2.6.2 Cyclic Bindings . 10

2.6.3 Literal Bindings . 10

2.6.4 Explicit Contexts . 11

2.7 Failures . 11

2.7.1 Conditional Bindings . 12

2.7.2 Explicit Failures and Failure Types . 13

2.7.3 Conditionally Active Bindings based on Failure Type . 13

2.8 Input Nodes . 13

2.9 Attributes . 14

2.10 Subnodes . 15

2.11 Node States . 15

3 Meta-Nodes 17

3.1 Defining Meta-Nodes . 18

3.1.1 Optional Arguments . 19

3.1.2 Rest Arguments . 19

3.1.3 Local Nodes . 20

3.1.4 Self Node . 21

3.1.5 Nested Meta-Nodes . 22

3.2 Recursive Meta-Nodes . 22

3.3 Outer Node References . 22

Tridash 0.10 Reference Manual iii

3.4 External Meta-Nodes . 23

3.5 Higher-Order Meta-Nodes . 24

3.6 Macro Nodes . 24

3.6.1 Literal Symbols . 25

3.6.2 Node References . 25

3.7 Instances as Targets . 26

3.8 Target Node Transforms . 26

4 Modules 27

4.1 Creating Modules . 27

4.2 Referencing Nodes in Different Modules . 27

4.2.1 Module Pseudo-Nodes . 27

4.2.2 Importing Nodes . 29

4.2.3 Direct References . 30

4.3 Operator Table . 31

4.3.1 Registering Infix Operators . 32

5 Core Module 32

5.1 Literals . 32

5.1.1 Macro-Node: ’(x) . 32

5.1.2 Macro-Node: c(x) . 33

5.1.3 Macro-Node: &(node) . 33

5.2 Bindings . 33

5.2.1 Macro-Node: ->(source, target) . 33

5.2.2 Macro-Node: <-(target, source) . 33

5.2.3 Macro-Node: @(node, context : ’(default)) . 34

5.2.4 Macro-Node: ::(node, state) . 34

5.3 Meta-Node Definitions . 34

5.3.1 Macro-Node: :(id(args...), body) . 34

5.3.2 Macro-Node: ..(node) . 35

5.4 Failures . 35

5.4.1 Meta-Node: fail(:(type)) . 35

5.4.2 Meta-Node: fail-type(x) . 35

5.4.3 Meta-Node: fails?(x) . 35

5.4.4 Meta-Node: ?(x) . 35

5.4.5 Meta-Node: fail-type?(x, type) . 36

5.4.6 Meta-Node: !!(x) . 36

5.4.7 Meta-Node: !-(test, value) . 36

5.4.8 Macro-Node: !(functor) . 36

Tridash 0.10 Reference Manual iv

5.4.9 Meta-Node: catch(try, catch, :(test)) . 36

5.5 Builtin Failure Types . 37

5.5.1 Failure Type Node: No-Value . 37

5.5.2 Failure Type Node: Type-Error . 37

5.5.3 Failure Type Node: Index-Out-Bounds . 37

5.5.4 Failure Type Node: Invalid-Integer . 37

5.5.5 Failure Type Node: Invalid-Real . 37

5.5.6 Failure Type Node: Arity-Error . 37

5.6 Arithmetic . 37

5.6.1 Meta-Node: +(x, y) . 37

5.6.2 Meta-Node: -(x, :(y)) . 38

5.6.3 Meta-Node: *(x, y) . 38

5.6.4 Meta-Node: /(x, y) . 38

5.6.5 Meta-Node: %(x, y) . 38

5.7 Comparison . 39

5.7.1 Meta-Node: <(x, y) . 39

5.7.2 Meta-Node: <=(x, y) . 39

5.7.3 Meta-Node: >(x, y) . 39

5.7.4 Meta-Node: >=(x, y) . 39

5.7.5 Meta-Node: =(a, b) . 40

5.7.6 Meta-Node: !=(a, b) . 40

5.8 Logical Operators . 40

5.8.1 Meta-Node: and(x, y) . 40

5.8.2 Meta-Node: or(x, y) . 41

5.8.3 Meta-Node: not(x) . 41

5.9 Selection Operators . 42

5.9.1 Meta-Node: if(condition, true-value, :(false-value)) 42

5.9.2 Macro-Node: case(..(clauses)) . 42

5.9.3 Node True . 42

5.9.4 Node False . 43

5.10 Types . 43

5.10.1 Meta-Node: int(x) . 43

5.10.2 Meta-Node: real(x) . 43

5.10.3 Meta-Node: string(x) . 43

5.10.4 Meta-Node: to-int(x) . 44

5.10.5 Meta-Node: to-real(x) . 44

5.10.6 Meta-Node: to-string(x) . 44

5.10.7 Meta-Node: int?(x) . 44

5.10.8 Meta-Node: real?(x) . 44

Tridash 0.10 Reference Manual v

5.10.9 Meta-Node: string?(x) . 45

5.10.10 Meta-Node: symbol? . 45

5.10.11 Meta-Node: char? . 45

5.10.12 Meta-Node: inf?(x) . 45

5.10.13 Meta-Node: NaN?(x) . 45

5.11 Lists . 45

5.11.1 Meta-Node: cons(head, tail) . 45

5.11.2 Meta-Node: head(list) . 46

5.11.3 Meta-Node: tail(list) . 46

5.11.4 Meta-Node: cons?(thing) . 46

5.11.5 Node: Empty . 46

5.11.6 Node: Empty! . 46

5.11.7 Meta-Node: list(..(xs)) . 46

5.11.8 Meta-Node: list*(..(xs)) . 47

5.11.9 Meta-Node: list!(..(xs)) . 47

5.11.10 Meta-Node: nth(list, n) . 47

5.11.11 Meta-Node: append(list1, list2) . 47

5.11.12 Meta-Node: foldl’(x, f, list) . 47

5.11.13 Meta-Node: foldl(f, list) . 48

5.11.14 Meta-Node: foldr(f, list, :(x)) . 48

5.11.15 Meta-Node: map(f, list) . 48

5.11.16 Meta-Node: filter(f, list) . 48

5.11.17 Meta-Node: every?(f, list) . 49

5.11.18 Meta-Node: some?(f, list) . 49

5.11.19 Meta-Node: not-any?(f, list) . 49

5.11.20 Meta-Node: not-every?(f, list) . 49

5.12 Strings . 49

5.12.1 Meta-Node: string-at(string, index) . 49

5.12.2 Meta-Node: string-concat(string, str1, str2) . 50

5.12.3 Meta-Node: string->list(string) . 50

5.12.4 Meta-Node: list->string(list) . 50

5.12.5 Meta-Node: format(string, ..(args)) . 50

5.13 Dictionaries . 50

5.13.1 Meta-Node: member(dict, key) . 50

5.14 Functions . 51

5.14.1 Meta-Node: apply(f, ..(xs)) . 51

5.15 Introspection . 51

5.15.1 Meta-Node: node?(thing) . 51

5.15.2 Meta-Node: find-node(node, :(module)) . 51

Tridash 0.10 Reference Manual vi

5.15.3 Meta-Node: get-attribute(node, attribute) . 51

5.16 Pattern Matching . 52

5.16.1 Nested Patterns . 52

5.16.2 Constant Patterns . 53

5.16.3 Matchers . 53

5.17 Module: core/patterns . 54

5.17.1 Meta-Node: Pattern(condition, :(binding)) . 54

5.17.2 Meta-Node: get-matcher(node) . 55

5.17.3 Meta-Node: make-pattern(place, pattern) . 55

5.17.4 Meta-Node: combine-conditions(c1, c2) . 55

5.17.5 Meta-Node: conditionalize-bindings(condition, bindings) . 55

5.17.6 Failure Type Node: Match-Fail . 56

5.17.7 Meta-Node: fail-match(condition) . 56

5.17.8 Meta-Node: make-match-bind(src, target) . 56

5.17.9 Meta-Node: make-pattern-declarations(pattern) . 56

5.18 Operator Table . 56

6 Optimizations 57

6.1 Coalescing . 57

7 Interfacing with Other Languages 58

7.1 Calling External Functions . 59

7.2 Accessing and Setting Node Values . 59

7.2.1 Runtime Module Objects . 59

7.2.2 Runtime Node Objects . 59

7.3 JavaScript Backend . 60

7.3.1 Value Types . 60

7.3.2 Failure Values . 60

7.3.3 Builtin Failure Types . 61

7.3.4 Lazy Evaluation . 61

7.3.5 Linking Meta-Nodes to External Functions . 62

7.3.6 Runtime Module Object . 63

7.4 WebAssembly Backend . 64

7.4.1 Memory . 64

7.4.2 Value Types . 64

7.4.3 Builtin Failure Types . 65

7.4.4 Marshaller . 65

7.4.5 Lazy Evaluation and Garbage Collection . 66

7.4.6 Linking Meta-Nodes to External Functions . 67

7.4.7 Runtime Module Object . 68

Tridash 0.10 Reference Manual vii

8 Compiler Options 69

8.1 Compilation Targets . 69

8.2 Output Options . 69

8.2.1 JavaScript Backend . 69

8.2.2 WebAssembly Backend . 70

9 Index 72

Tridash 0.10 Reference Manual 1 / 78

Complete reference manual for version 0.10 of the Tridash programming language.

1 Syntax

Syntactically a Tridash program consists of a sequence of node declarations, each consisting of a single node expression. Node
expressions are divided into three types: atom nodes, functor nodes and literal nodes. Declarations are separated by a semicolon
; character or a line break.

Anything occurring between a # character and the end of the line is treated as a comment and is discarded.

Basic Grammar

<declaration> = <node>(';' | <line break> | <end of file>)

<node> = <functor> | <identifier> | <literal>
<node> = '(' <node> ')'

<functor> = <prefix-functor> | <infix-functor>
<prefix-functor> = <node> '(' [<node> {',' <node>}*] ')'
<infix-functor> = <node>' '<identifier>' '<node>

<literal> = <number> | <string>
<number> = <integer> | <real>

Grammar Notation

The grammar notation used in this manual adheres to the following conventions:

• Angle brackets <...> indicate named syntactical entities.

• = designates that the syntactical entity on the left is defined by the rules on the right. Multiple definitions of the same syntactical
entity indicate disjunction of the rules in each definition.

• | indicates disjunction in a single definition.

• Literal tokens are enclosed in single quotes ’...’.

• .. indicates ranges, e.g. ’0’..’9’ indicates the digit characters in the range 0 to 9: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

• Rules enclosed in square brackets [...] are optional.

• Multiple rules enclosed in braces {...} are grouped into a single rule.

• * indicates zero or more repetitions of the preceding rule.

• + indicates one or more repetitions of the preceding rule.

1.1 Atom Nodes

An atom node consists of a single node identifier, referred to as a symbol. Node identifiers may consist of any sequence of
characters excluding whitespace, line breaks, and the following special characters: (,), {, }, ", ,, ., ;, #. Node identifiers
must consist of at least one non-digit character, otherwise they are interpreted as numbers.

The following are all examples of valid node identifiers:

• name

• full-name

Tridash 0.10 Reference Manual 2 / 78

• node1

• 1node

The following are not valid node identifiers:

• 123

• a.b

• j#2— Only the j is part of an identifier, the #2 is a comment

• 1e7— As the e indicates a real-number in scientific notation. See Numbers.

1.2 Functors

A functor node is an expression consisting of an operator node applied to zero or more argument nodes. Syntactically the operator
node is written first followed by the comma-separated list of argument nodes in parenthesis (...).

Examples

op(arg)
func(arg1, arg2)
m.fn()

Important
A line break occurring before the closing parenthesis) is not treated as a declaration separator. Instead the following
line is treated as a continuation of the current line.

In the special case of an operator applied to two arguments, the operator may be placed in infix position, that is between the two
argument nodes. The operator may only be an atom node and must be registered as an infix operator.

Important
Spaces between the infix operator and its operands are required, in order to distinguish the operator from the operands.
This is due to there being few restrictions on the characters allowed in node identifiers.

Important
A line break occurring between the infix operator and its right argument is not treated as a declaration separator.
However a line break between the left argument and infix operator is treated as terminating the declaration consisting
of the left argument. The following line is then treated as a new separate declaration.

Functor expressions written in infix and prefix form are equivalent, thus the following infix functor expression:

a + b

is equivalent to the following prefix functor expression (either expression may be written in source code):

+(a, b)

Each node registered as an infix operator has, associated with it, a precedence and associativity. The precedence is a number that
controls the priority with which the operator consumes its arguments. Operators with a higher precedence consume arguments
before operators with a lower precedence. The associativity controls whether the operands are grouped starting from the left or
right, in an expression containing multiple instances of the same infix operator.

Tridash 0.10 Reference Manual 3 / 78

a + b * c

The * operator has a greater precedence than the + operator, thus it consumes its arguments first, consuming the b and c
arguments.

The + operator has a lower precedence thus it consumes its arguments after *. The arguments available to it are a and *(b,
c).

As a result the infix functor expression is parsed to the following:

+(a, *(b, c))

Use parenthesis to control which arguments are grouped with which operators. Thus for an infix expression to be parsed to the
following, , assuming the * operator has a greater precedence than +:

*(+(a, b), c)

a + b must be surrounded in parenthesis:

(a + b) * c

1.3 Node Lists

Multiple declarations can be syntactically grouped into a single node expression using the { and } delimiters. All declarations
between the delimiters are processed and accumulated into a special node list syntactic entity. In most contexts the node list is
treated as being equivalent to the last node expression before the closing brace }, however special operators and macros may
process node lists in a different manner.

Node Lists

<node> = <node list>
<node list> = '{' <declaration>* '}'

Warning
Each node list must be terminated by a closing brace } further on in the file otherwise a parse error is triggered.

1.4 Literals

Literal nodes include numbers and strings.

1.4.1 Numbers

There are two types of numbers: integers and real-valued numbers, referred to as reals, which are represented as floating-point
numbers.

Integers consist of a sequence of digits in the range 0--9, optionally preceded by the integer’s sign. A preceding - indicates a
negative number. A preceding + indicates a positive integer, which is the default if the sign is omitted.

Integer Syntax

<integer> = ['+'|'-']('0'..'9')+

Tridash 0.10 Reference Manual 4 / 78

There are numerous syntaxes for real-valued numbers. The most basic is the decimal syntax which comprises an integer followed
by the decimal dot . character and a sequence of digits in the range 0--9.

Decimal Real Syntax

<real> = <decimal> | <magnitude-exponent>

<decimal> = <integer>'.'('0'..'9')+

Note
The decimal . must be preceded and followed by at-least one digit character. Thus .5 and 1. are not valid real literals, 0.5
and 1.0 have to be written instead.

The exponent syntax allows a real-number to be specified in scientific notation as a magnitude m and exponent n pair m× 10n.
The exponent syntax comprises a real in decimal syntax or an integer, followed by the character e, f, d, or l which indicates the
precision of the real-number, followed by the exponent as an integer.

Exponent Syntax

<magnitude-exponent> = (<decimal>|<integer>)['e'|'f'|'d'|'l']<integer>

e and f indicate a single precision floating point number, d indicates double precision and l indicates long precision.

1.4.2 Strings

Literal strings consist of a sequence of characters enclosed in double quotes "...".

String Syntax

<string> = '"'<unicode char>*'"'

where <unicode char> can be any Unicode character.

A literal " character can appear inside a string if it is preceded by the backslash escape character \.

Example

"John said \"Hello\""

Certain escape sequence, consisting of a \ followed by a character, are shorthands for special characters, allowing the character
to appear in the parsed string without having to write the actual character in the string literal.

Table 1: Escape Sequences

Sequence Character ASCII Character Code (Hex)
\n Line Feed (LF) / New Line 0A
\r Carriage Return (CR) 0D
\t Tab 09
\u{<code>} Unicode Character <code>

The \u{<code>} escape sequence is replaced with the Unicode character with code (in hexadecimal) <code>. There must be
an opening brace { following \u otherwise the escape sequence is treated as an ordinary literal character escape, in which \u is
replaced with u. Currently the closing brace is optional }, as only the characters up to the first character that is not a hexadecimal
digit are considered part of the character code. However, it is good practice to insert the closing brace as it clearly delimits which
characters are to be interpreted as the character code and which characters are literal characters.

Tridash 0.10 Reference Manual 5 / 78

Tip
The \n, \r and \t escape sequences can alternatively be written as \u{A}, \u{D} and \u{9} respectively.

Caution
In a future release, omitting either the opening or closing brace, in a Unicode escape sequence, may result in a parse
error.

2 Nodes

Semantically a Tridash program is composed of a set of stateful components called nodes, each holding a particular value at a
given moment in time.

Each node has a set of dependency nodes. A change in the value of at least one of the dependency nodes causes the node to
recompute its own value. The node is said to be an observer of its dependency nodes, as it actively observes and responds to
changes in their values. Similarly, each node has a set of observer nodes which it notifies whenever its own value changes.

This dependency — observer relation is referred to as a binding.

2.1 Glossary

dependency
A node a is said to be a dependency of node b if a change in the value of a triggers a change in the value of b.

observer
A node a is said to be an observer of node b if a change in the value of b triggers a change in the value of a.

binding
A binding is a relation between two nodes a and b, in which one node a is a dependency of the other b, and likewise the
other node b is its observer.

ancestor
A node a is said to be an ancestor of a node b if a is a dependency of b or it is an ancestor of a dependency of b.

successor
A node a is said to be a successor of a node b if a is an observer of b or it is a successor of an observer of b.

2.2 Declaring Nodes

In the global scope, nodes are created on the first reference, that is when their identifier first appears in source code. This can
either be a declaration consisting of the identifier itself or a functor node declaration of which the node is an argument.

Caution
The self identifier is reserved as an alias for the current meta-node, see Section 3.

Examples

Tridash 0.10 Reference Manual 6 / 78

Results in the creation of node `name`
name

Results in the creation of nodes `a` and `b`
a -> b

Results in the creation of nodes `x`, `y` and `f(x, y)`
f(x, y)

This allows for a relaxed ordering of declarations. A node’s definition need not be complete in order for it to be referenced as an
argument.

Notice that in the last example, above, a node f(x, y) was created. This node corresponds to the functor node expression, thus
functors, with the exception of a few special declarations, are nodes themselves. From now on a functor node expression refers
only to functors in which the operator refers to a function. Functor expressions in which the operator does not refer to a function
are referred to as special declarations.

Note
Operators which correspond to functions, such as f in the example above are referred to as meta-nodes and the functor
expression as an instance of the meta-node. See Section 3.

Note
Nodes are also created for functors written in infix form, e.g. for the functor a + b, the node +(a, b) is created.

A node corresponding to a -> b was not created. This is a bind declaration which is treated rather specially. The -> is not a
meta-node, that is it does not compute a value, but is a special operator.

2.3 Declaring Bindings

A binding between two nodes is declared with the special bind operator ->.

a -> b

The above declares b an observer of a and likewise a a dependency of b. The result is that a change in the value of a will trigger
a change in the value of b. This is an example of a simple binding, since the value of b is simply set to the value of a.

Note
In an explicit binding declaration the dependency, i.e. the left-hand side of the -> operator, is referred to as the source node
and the observer, i.e. the right-hand side, is referred to as the target node.

Note
The bind operator is registered as an infix operator with precedence 10 and right associativity.

Tip
The -> operator is in the form of an arrow which indicates the direction of data-flow, from the node on the left to the node on
the right.

Functional bindings involve a function of one or more argument nodes. Functional bindings are created implicitly in functor node
expressions, with each argument node added as a dependency of the functor node. A change in the value of at least one argument
node results in the value of the functor node being updated to the result of reevaluating the expression with the new values of the
argument nodes.

Example

Tridash 0.10 Reference Manual 7 / 78

a + b

In the example, above, a functor node +(a, b) is created with the arguments a and b implicitly added as dependencies of
+(a, b). A change in either a or b will result in the value of +(a, b) being recomputed.

2.4 Propagation of Changes

As emphasized in the previous sections, changes in the value of a node are propagated to its observer nodes. The new value is
propagated to each of the observers simultaneously. Each observer then proceeds to recompute its own value in parallel with the
other observers.

Example

a -> b
a + n -> c
a + 1 -> d

Node a has three observers: b, +(a, n), +(a, 1). Each of b, +(a, n) and +(a, 1) receives the new value of a and
immediately begins computing its new value. There is no strict sequential ordering of the updating of the values of the observer
nodes. The following orderings are all possible:

• b, +(a, n), +(a, 1)

• +(a, n), b, +(a, 1)

• +(a, 1), +(a, n), b

Other orderings, including interleaved orderings, are also possible or it may be that the values of all the observers are updated in
parallel.

It is important to note the semantics when nodes share a common observer and the change in value of each node is triggered by
a common ancestor node. A node is said to be dirtied if either its value has changed, or at least one of its dependency nodes
has been dirtied. If a node is dirtied, all its observers are dirtied, and likewise their observers are dirtied and so on. A node
with multiple dependencies will only recompute its value when it receives a value change notification from each of its dirtied
dependency nodes. Thus there is no intermediate value where the node’s value is recomputed before all the dependency nodes
have recomputed their values.

Caution
This is only the case when the changes in each of the dependency nodes are triggered by a change in a common
ancestor node. These semantics do no apply when the changes in the dependency nodes are not triggered by a
change in a common ancestor node but by multiple simultaneous changes in an ancestor of each dependency, unless
the changes in each ancestor are the setting of the initial values, in which case it is treated as though they have been
triggered by a single common ancestor. See Literal Bindings.

Example

a -> b
a + 1 -> c

b + c -> out

In the example, above, a is a common ancestor of dependency nodes b and c of node +(b, c). A change in a will dirty the
following nodes:

• a

Tridash 0.10 Reference Manual 8 / 78

• b

• +(a, 1)

• c

• +(b, c)

• out.

The value of +(b, c) will only be recomputed when the values of both b and c have been recomputed.

If b and c did not have the common ancestor a, the value of +(b, c) would be computed on each change in the value of either
b or c, regardless of whether the changes in values of b and c are triggered simultaneously or not.

2.5 Evaluation Strategy

The value of a node is not strictly evaluated. This means that a node’s value is only evaluated if it is actually used. In most cases
the result of this is that nodes are evaluated lazily, that is they are evaluated on their first use. However if it can be statically
determined that a node’s value will always be used it may be evaluated before its first use.

Example: Lazy Evaluation in If Conditions

a - b -> d1
b - a -> d2

if(a > b, d1, d2)

In the example, above, d1 is only evaluated if a > b evaluates to true. Likewise, d2 is only evaluated if a > b evaluates to
false. a > b is always evaluated as its value is always used. In this example, this only results in a performance optimization
since the values of node’s which are not used are not needlessly computed. However, if d1 or d2 were bound to a recursive
meta-node call, see Section 3, an infinite loop of recursive calls would result had d1 and d2 not been evaluated lazily.

A node’s value is evaluated at most once. Referencing the node’s value in more than one location will not cause it to be evaluated
more than once. This applies to functor nodes as well as atom nodes.

Example: Multiple Usage of Nodes

Node `f(x, y)` is used in 2 places however it will only be evaluated
once.

f(x, y) + a -> node1
f(x, y) + b -> node2

2.6 Contexts

The function which computes a node’s value is controlled by the node’s context at that moment in time. The node context stores
information about the function and which of the dependency nodes are operands to the function. Contexts are created whenever
a binding between two nodes is established.

The most simple context function is the passthrough, created when a simple binding between two nodes is established. With this
function, the node’s value is simply set to the value of its dependency node.

Passthrough Example

`b` is set to the value of `a` whenever it changes

a -> b.

Contexts with more complex functions, of more than one operand, are created for each functor node expression. The created
context has the operator as the context function and the arguments as the context operands.

Functor Node Example

Tridash 0.10 Reference Manual 9 / 78

A functor node `+(a, b)` is created with a `+` context.
`a` and `b` are added to the operands of the `+` context.

a + b

A node can have more than one context. A context is activated, meaning its function is evaluated to compute the node’s value,
whenever the value of one of its operand nodes changes.

Multiple Context Example

a -> x
b -> x
c -> x

When the value of a changes, the a context of x is activated and the value of x is set to the value of a. Similarly when b or c’s
value changes, the b or c context is activated, respectively, and x’s value is set to the value of b or c, respectively.

Warning
It is an error for two or more contexts of a single node to be activated at the same time. This occurs when either both
contexts have a common operand or an operand from one context has a common ancestor with an operand from the
other context.
Example 1

Node `a` is a dependency of `b`
Node `a` is a dependency of `+(a, c)`
Both `b` and `+(a, c)` are dependencies of `x`

a -> b
b -> x

a + c -> x

In the example, above, node a is a dependency node of b which is an operand of the b context of x. However, node
a is also a dependency of node +(a, c) (a + c), which is an operand of the +(a, c) context of x. A change in
the value of a would trigger a change in the value of both b and +(a, c) thus the value to which b should be set is
ambiguous.
Structure checking is performed at compile-time, thus the above example, and all such scenarios, will result in a
compilation error along the lines: Semantic Error: Node x has multiple contexts activated
by a single common ancestor.

2.6.1 Two-Way Bindings

A dependency of a node may also be an observer of the same node. This allows for a two-way binding in which data may flow
from either direction. In this case only the observer nodes which are not also operands of the node’s current context are notified
of a change in the node’s value.

Example

A two-way binding is established between `a` and `b`
a -> b
b -> a

a -> c

d -> a

In the above example, both b and c, which are observers of a, will be notified of a change in the value of a triggered by a change
in the value of d. This will trigger a change in the value of b however a will not be notified of this change as the change was
triggered by a, itself.

Tridash 0.10 Reference Manual 10 / 78

In the case of a change in the value of a triggered by a change in the value of b, only the observer c of a will be notified of the
change.

2.6.2 Cyclic Bindings

Cyclic bindings are bindings between a set of nodes, such that there is a path, via bindings, from a node to itself, consisting of at
least three nodes. The resulting value of the node contains a cyclic reference to itself.

Important
A cycle comprising just a pair of nodes is interpreted as a two-way binding rather than a cyclic binding.

Example

cons(a, y) -> x
cons(b, x) -> y

The cycle in this example involves the nodes:

• x

• cons(b, x)

• y

• cons(a, y)

In this example the value function of x is effectively:

cons(a, cons(b, x))

where x, is substituted with a reference to the result of the evaluation of the expression, itself. This is well-formed since the
arguments to the cons meta-node are evaluated lazily.

Caution
In order for a cyclic binding to have a meaningful result, the cyclic reference must be evaluated lazily. The following
will result in an infinite loop, as the cyclic reference to i, in i + 1, is strictly evaluated. Currently there is no compiler
warning or error.

i + 1 -> i

2.6.3 Literal Bindings

A binding in which the dependency is a literal value, is interpreted as setting the initial value of a node. A special init context
is created, which has no operands and has the literal value as its function.

Initial values are set on the launch of the application, and are treated as an ordinary value change to the initial value. The initial
active context of the node is the init context. If a node is not given an initial value, its initial value is a failure value of type
No-Value, see Section 2.7.

Examples

0 -> counter
"hello" -> message
10.5 -> threshold

Tridash 0.10 Reference Manual 11 / 78

Important
The setting of the initial values of each node, is treated as having been triggered by a single common ancestor node.
See Section 2.4 for the implications of this.

2.6.4 Explicit Contexts

The context to which a binding is established can be set explicitly with the special /context operator.

Syntax

/context(node, context-id)

The effect of this expression, when it appears as the target of a binding, is that the binding to node will be established in the
context with identifier context-id. The identifier can be a symbol or a functor.

Example

Context `my-context` of b has a passthrough value function to the
value of the dependency `a`.

a -> /context(b, my-context)

When a /context declaration appears in source position it is equivalent to an ordinary reference to the node.

Multiple bindings to the same explicit context can be established. The function of the context then selects the value of the first
dependency, ordered by the declaration order in the source file, which does not fail to evaluate to a value, see Section 2.7.

Example

a -> /context(node, ctx)
b -> /context(node, ctx)
c -> /context(node, ctx)

node evaluates to:

• The value of a if a evaluates to a value.

• The value of b if a fails to evaluate to a value.

• The value of c if both a and b fail to evaluate to a value.

If a, b and c all fail to evaluate to a value, node evaluates to the failure value of c.

Tip
The @ macro from the core module, which is a shorthand for the /context operator, is the preferred way of establishing
bindings to explicit contexts in source code.

2.7 Failures

Failures are a special type of value which represents the absence of a value or the failure to compute a value. Failures can either be
created by conditional bindings, in which the condition node evaluates to false, or by the fail meta-node, from the builtin
module.

Functions which expect an argument node to evaluate to a value will fail if at least one argument fails. In formal terms, if the
result of a function requires that the value of an argument, which fails to evaluate to a value, be evaluated, the entire function
fails to evaluate to a value. The following are examples of functions which fail if at least one of argument fails: +, -, *, /.

If the result of a function is a dictionary, and a dictionary entry fails to evaluate to a value, it is only that dictionary entry that
fails, the function still returns a dictionary.

Tridash 0.10 Reference Manual 12 / 78

2.7.1 Conditional Bindings

A binding declaration a -> b can, itself, be treated as a node, to which an explicit binding can be established with the binding
node as the target.

c -> (a -> b)

The result of this declaration is that the binding a -> b is only active if the condition node c evaluates to true, the value of the
builtin True node,. If c evaluates to false, the value of the builtin False node, b is not set to the value of a but is set to a failure
value of type No-Value.

A binding declaration, with a binding node as the target, changes the function of the context of the binding to return a failure value
if the value of the condition node is false. The binding node a -> b (->(a, b) in prefix notation), is added as a dependency
of b and as an operand of the context corresponding to the binding a -> b. The binding node is itself an observer of c with a
simple passthrough function. This allows you to reference the status of the binding by referencing the binding node, a -> b.

Example: Simple Validation

Validate that `i` has a value > 0
Propagate value of `i` to `j`

i > 0 -> (i -> j)

Perform some computation with `j` which is guaranteed to either be a
numeric value greater than zero or a failure.
...

Tip
The bind -> operator has right associativity, thus the parenthesis in c -> (a -> b) can be omitted: c -> a -> b.

Conditional bindings to an explicit context can also be established, see Explicit Contexts. If a condition node evaluates to false, it
is treated as though the corresponding dependency node has failed to evaluate to a value. The context’s function then evaluates to
the next dependency which does not fail to evaluate to a value. If all condition nodes evaluate to false, the node fails to evaluate
to a value.

Example: Conditional Bindings and Explicit Contexts

cond1 -> (a -> /context(node, ctx))
cond2 -> (b -> /context(node, ctx))
c -> /context(node, ctx)

• If cond1 evaluates to false, it is treated as though a has failed to evaluate to a value.

• If cond2 evaluates to false, it is treated as though b has failed to evaluate to a value.

The net result is that node evaluates to:

• a if cond1 evaluates to true.

• b if cond2 evaluates to true.

• c if neither cond1 not cond2 evaluate to true, or both a and b fail to evaluate to a value.

Tridash 0.10 Reference Manual 13 / 78

2.7.2 Explicit Failures and Failure Types

Failure values can also be created explicitly with the fail meta-node, from the core module. This meta-node takes one optional
argument: a value indicating the failure type. If the failure type is not provided, the failure returned does not have a type.

Example: Explicit Failure with Type

Bind `b` to `a` if `c` is true
c -> (a -> /context(b, ctx))

If `c` is false set `b` to an explicit failure
fail("my-type") -> /context(b, ctx)

The failure type of a failure value can be retrieved with the fail-type meta-node. This meta-node takes a single argument, which
if it evaluates to a failure, returns the failure type associated with the failure. If the argument does not fail to evaluate to a value,
or the failure has no type associated with it, fail-type returns a failure.

Example: Querying Failure Type

Compare failure type of `b`, to "my-type" from example above

fail-type(c) = "my-type" -> c-fails?

The failure type is useful to identify the cause of a failure, since failures are used to represent many classes of errors, such as type
errors, out of range errors, no value errors, as well as representing special classes of values.

2.7.3 Conditionally Active Bindings based on Failure Type

The special /context operator takes an optional third argument which is a test function that is evaluated prior to activating the
binding after the previous binding fails. The test function is applied on a single argument, the failure type of the previous binding.
If the function returns true the binding is activated otherwise this binding fails with the same failure type as the preceding binding.

Tip
The @ macro, from the core module, contains a shorthand syntax for establishing a binding to an explicit context with a test
function that compares the failure type to a given value.

2.8 Input Nodes

Input nodes are the nodes which receive the application input, which could be the value entered in a text field of the user interface
(UI), data received from the network, etc. Input nodes do not have any dependencies and have a special input context, which
does not have a value computation function. Instead the value of the node is meant to be set explicitly through some external
event.

Input nodes have to be explicitly designated as such by setting the input attribute to true. See Section 2.9 for more information
about node attributes.

Example: Setting Input Attribute

a -> b

Designate `a` as an input node
/attribute(a, input, True)

Caution
A compilation error is triggered if a node has a dependency that is not reachable from any input node, however has at
least one dependency that is reachable from an input node. The error is not signalled if all of the node’s dependencies
are unreachable from all the input nodes.

Tridash 0.10 Reference Manual 14 / 78

2.9 Attributes

Attributes are arbitrary key value pairs associated with a node, which control various compilation options. These are set using
the special /attribute operator.

The first argument is the node of which to set the attribute, the second argument is the attribute key (not interpreted as a node)
and the last argument is the value, which is interpreted as a literal value, not a node reference.

/attribute declarations may only appear at top-level and may not appear in binding declarations or as arguments in functor
nodes.

Attribute Declaration Syntax

/attribute(node, attribute, value)

Note
The attribute key need not be a string, it may simply be an identifier as it is not interpreted as a node.

Note
Attribute keys are case insensitive. Additionally a string attribute key and an equivalent identifier key both refer to the same
attribute. Thus the following keys all refer to the same attribute: key, Key, "key", "KEY".

Important
The value is treated as a literal value, not a reference to the value of a node, since attributes do not form part of the
runtime node’s state.

The input attribute has already been introduced. The following is a list of some attributes and a summary of their effect:

input
When set to true, designates a node as an input node. See Section 2.8.

coalescable
When set to false, prevents the node from being coalesced into other nodes. See Section 6.1.

removable
When set to false, prevents the node from being removed.

public-name
The name with which the runtime node can be referenced from non-Tridash code.

macro
When set to true, indicates that a meta-node is a macro and should be invoked at compile-time. See Section 3.6.

target-node
Sets the name of a meta-node to use as the value function, in the contexts of the bindings of the meta-node instance (as the
source node) to its arguments (as the target node). See Section 3.7.

target-transform
The name of a meta-node to invoke if the meta-node, of which the attribute is set, appears as the target of a binding. See
Section 3.7.

Examples

/attribute(a, input, True)
/attribute(a, public-name, "app-input")

Tridash 0.10 Reference Manual 15 / 78

2.10 Subnodes

Subnodes are nodes which reference a value, with a particular key, out of a dictionary of values stored in another node, referred
to as the parent node.

Subnodes are referenced using the special . operator, which is also an infix operator. The parent node appears on the left-hand
side and the key on the right-hand side. The key is treated as a literal identifier.

Syntax

<parent node>.<key identifier>

Note
The . operator is lexically special in that spaces are not required to separate it from its operand.

Note
The . infix operator has precedence 1000 and left associativity.

Example

string-concat(
person.first-name, v1
person.last-name v2

) -> full-name

v1 References the first-name subnode of node person.v2 References the last-name subnode of node person.

An implicit two-way binding is established between the subnode and parent node. The binding in the direction parent ->
subnode has a value function which extracts the subnode key from the dictionary stored in parent. The binding in the reverse
direction, subnode -> parent, has a function which creates a dictionary with an entry which has the subnode key as the key
and the value of subnode as the value. This allows a dictionary to be created in the parent node by establishing an explicit
binding with subnode as the target. Multiple such bindings, with different subnodes of parent, will result in a dictionary
being created with an entry for each subnode.

Example: Creating Dictionaries

"John" -> person.first-name
"Smith" -> person.last-name

The value of a subnode is only evaluated when the value of its dictionary entry is referenced. A subnode is not evaluated when
only the value of its parent node, which evaluates to the dictionary, is referenced. See Section 2.5. If a subnode fails to evaluate
to a value, it does not cause the parent node to fail to evaluate to value. The parent node evaluates to a dictionary however the
dictionary entry, corresponding to the subnode, evaluates to a failure. See Section 2.7.

Accessing a non-existent entry, or accessing a subnode of a parent node which does not evaluate to a dictionary will result in a
failure.

2.11 Node States

A binding can be established between the same node, as both the source and target of the binding, however in different states.
The binding thus acts as a state transition function which computes the value of the node in its current state given its value in the
previous state.

The special /state operator allows a binding to a particular state of a node to be established.

Syntax

Tridash 0.10 Reference Manual 16 / 78

/state(node, state-identifier)

where node is the node and state-identifier is a symbol identifying the state.

When a /state expression appears as the target of a binding, the binding will only take effect when node switches to the state
with identifier state-identifier. This allows node to appear in the source of the binding either directly or as part of a
node expression, in which case the current value of node is referenced to compute its value in the new state.

Important
When a /state expression appears as the source of a binding, it reduces to a reference to the value of node. It is not
a reference to the value of node in a particular state.

The /state operator may also take an additional third argument, in which case the arguments are interpreted as follows:

Syntax: With Explicit From and To States

/state(node, from-state, to-state)

This specifies that the binding, of which the /state expression is a target, is only active when the state of node switches from
the state with identifier from-state to the state with identifier to-state.

The state of a node n is determined by the value of the special node /state(n), to which bindings can be established. The
value of /state(n) must be a symbol which is interpreted as a state identifier. The symbol may name a node state to which
no bindings are established.

Important
Any value change of the node /state(n) is considered a change in the state of the node, even if the new state is
identical to the previous state.

Multiple bindings, to the same node state, can be declared however bindings declared later in the source file take priority over
bindings declared earlier in the file.

Example 1: Simple Counter

counter + 1 -> /state(counter, increment)

if (increment, '(increment), '(default)) -> /state(counter)

Tip
The ’ operator is a macro which returns its argument as a literal symbol, see Literal Symbols.

The first declaration establishes the binding counter + 1 -> counter, which is active only when counter switches to
the increment state. When counter switches to the increment state, its value is updated to its current value incremented
by one.

The second declaration establishes a binding to the node /state(counter), the value of which determines the state of
counter. When the node increment changes to true, the value of /state(counter), and thus the state of counter, is
increment resulting in the value of counter being incremented by one. When increment is false, the state of counter
is default and thus the binding established by the first declaration has no effect.

Tridash 0.10 Reference Manual 17 / 78

Important
A change in the value of increment from true to true will result in a change in the state of counter from
increment to increment. Even though the new state is identical to the previous state, it is still considered a
change to the increment state and thus the value of counter is incremented. To avoid this use the three argu-
ment form of the /state operator which specifies both a from and to state.

Example 2: Simple Counter with Explicit From and To States

counter + 1 -> /state(counter, default, increment)

if (increment, '(increment), '(default)) -> /state(counter)

Using the three argument form of the /state operator, the first declaration establishes a binding, between counter + 1 and
counter, which is only active when the state of counter changes from default to increment. This differs from the
previous example, in which the binding is active when the state of counter changes from any state to increment.

In this example, the value of counter is not incremented if the state of counter changes from increment to increment,
as the binding counter + 1 -> counter is only active when the state changes from default to increment.

Tip
The :: macro from the core module, which is a shorthand for the /state operator, is the preferred way of establishing
bindings to explicit node states. The shorthand for the two argument form is node :: state and the shorthand for the
three argument form is node :: from => to.
The first declarations of the previous examples can thus be rewritten as follows:

First Declaration of Example 1
counter + 1 -> counter :: increment

First Declaration of Example 2
counter + 1 -> counter :: default => increment

3 Meta-Nodes

A meta-node is a function, of one or more arguments, which returns a value. Meta-nodes are nodes, themselves, however without
a runtime node object. For the most part you can treat meta-nodes as ordinary nodes, e.g. you can set meta-node attributes using
the same /attribute declaration. Referencing the value of a meta-node references the meta-node function.

Meta-node identifiers reside in the same namespace as that of ordinary nodes, that is you cannot have both an ordinary node and
meta-node with identifier f. If there is a meta-node f, the node expression f references the meta-node function.

Note
Functor nodes with the meta-node as the operator are referred to as instances of the meta-node.

Tip
Meta-nodes are referred to as meta-nodes, since they are nodes which describe how to compute the value of their instance
nodes. Meta-nodes may also be macro-nodes which are evaluated at compile-time, with the result being interpreted as Tridash
code.

Tridash 0.10 Reference Manual 18 / 78

3.1 Defining Meta-Nodes

Meta-nodes are defined using the special : definition operator which has the following syntax:

Definition Operator Syntax

name(arg1, arg2, ...) : {
declarations*

}

The meta-node identifier, name, appears on the left-hand side of the : operator followed by the comma-separated list of argu-
ments in parenthesis. Each item, at position n, of the argument list is the identifier of the local node to which the nth argument is
bound.

Caution
Identifiers beginning with /, followed by an alphanumeric character, are reserved for special operators. A meta-node
cannot have the same identifier as a special operator. Currently no warning or compilation error is triggered, if the
identifier is a reserved identifier but does not name an existing special operator, however that may change in a future
release.

The body consists of a sequence of ordinary node declarations enclosed in braces { ... }. The braces are simply a way
of grouping multiple declarations into a single expression, See Section 1.3. If the body of the meta-node contains just a single
expression, the braces may be omitted.

The meta-node function returns the value of the last node in the body.

Example

Returns 1 + `n`

1+(n) : n + 1

Factorial Example

Computes the factorial of `n`

factorial(n) : {
case (

n > 1 : n * factorial(n - 1),
1

)
}

The following example demonstrates that the body can contain any valid node declaration:

Fibonacci Example

fib(n) : {
fib(n - 1) -> fib1
fib(n - 2) -> fib2

case (
n <= 1 : 1,
fib1 + fib2

)
}

Important
Meta-nodes must be defined before they can occur as operators in functors.

Tridash 0.10 Reference Manual 19 / 78

Important
Meta-node bodies are only processed after all global (or the scope in which the meta-node declaration occurs) declara-
tions in the same file have been processed. This allows a meta-node g to be used within the body of another meta-node
f even if the definition of g appears after the definition of f. Effectively this allows for mutual recursion.

3.1.1 Optional Arguments

A node in the argument list, of a meta-node definition, may also be of the form name : value. This designates that the
argument, which is bound to local node name, is optional. If it is omitted, in an instance of the meta-node, the local argument
node is set to value instead.

Note
value is processed in the global scope as the meta-node definition is processed. Thus value cannot (as of yet), refer to the
preceding argument nodes of the meta-node.

The value may be omitted, written in prefix form :(name), in which case if the argument is omitted, the local argument node
is set to a failure, see Section 2.7, of type No-Value.

Example

Increment `x` by 1 or given delta

inc(x, d : 1) : x + d

Increment `a` by default delta 1
inc(a)

Increment `b` by explicit delta 2
inc(b, 2)

Important
Optional arguments may only be followed by optional arguments or a rest argument. An optional argument may not be
followed by a required argument.

3.1.2 Rest Arguments

The last node in the argument list, of a meta-node definition, may also be of the form ..(name). This designates that the local
node name is bound to the list containing the remaining arguments, on which the meta-node is applied, after the last optional or
required argument. This allows for a variable number of arguments.

Example

Add `n` to each remaining argument

add-n(n, ..(xs)) : {
inc(x) : x + n
map(inc, xs)

}

See Section 5.11 for the documentation of lists and the list processing functions.

Tridash 0.10 Reference Manual 20 / 78

3.1.3 Local Nodes

Nodes local to the meta-node’s definition may only be referenced from within the definition itself even if they have the same
identifiers as global nodes. Local nodes are created for each of the argument nodes.

A node reference, within the definition of a meta-node, primarily refers to the local node. If there is no local node with that
identifier, it refers to the node in the enclosing scope. If the enclosing scope does not contain a node with that identifier,
the scope’s enclosing scope is searched until the global scope is reached. If the node is not found in any enclosing scope a
compilation error is triggered.

Local nodes are created if they appear as the target of a binding, whether implicit or explicit. This is the means by which
local nodes, storing intermediate results are created. Local nodes are also created for each top-level atom node declaration, See
Section 1.1.

Note
The node creation rules inside meta-node definitions differ from the node creation rules at the global scope.

Tip
A global node, with the same identifier as a local node, can be referenced using the outer .. operator.

Example: Local Nodes

a + b -> x
x + y -> n

addx(n) : {
`n` refers to the local argument node `n`, not the global `n`
`x` refers to the global node `x`
n + x

}

Example: Meta-Nodes

1-(n) : n - 1

factorial(n) :
case (

The `1-` refers to the global `1-` meta-node
n > 1 : n * factorial(1-(n)),
1

)

Example: Local nodes storing intermediate results

x + 1 -> next

factorial(n) :

A local node `next` is created since it appears as the target of
a binding. `next` does not refer to the global node of the same
name.

n - 1 -> next

case (
n > 1 : n * factorial(next),
1

)

Tridash 0.10 Reference Manual 21 / 78

Example: Local Node Declarations

cycle(a, b) : {
x; y; # Declare local nodes `x` and `y` v1
cons(a, y) -> x
cons(b, x) -> y

x
}

v1 Top-level atom node declarations, resulting in the creation of local nodes x and y.

3.1.4 Self Node

The special self node is a local node which represents the meta-node’s value. This node can be used to set the value, returned
by the meta-node, using explicit bindings.

When an explicit binding to self is established, the meta-node no longer returns the value of the last node in its definition.

Caution
A meta-node may not have more than a single context, see Section 2.6, as it is ambiguous which context’s value
function to use as the meta-node function.

Note
In the absence of an explicit binding to self, the last node in the meta-node’s definition is implicitly bound to self.

Example

factorial(n) : {
n * factorial(n - 1) -> next
case (n > 1 : next, 1) -> self v1

}

v1 Explicit binding to self.

In the example, above, the value returned by the factorial meta-node is set by an explicit binding to the self node. The
meta-node no longer evaluates to the value of the last node in the declaration list.

The self node is particularly useful for creating a dictionary of values to which the meta-node evaluates to, see Section 2.10:

Example: Creating Dictionaries

Person(first, last): {
first -> self.first-name
last -> self.last-name

}

Tridash 0.10 Reference Manual 22 / 78

3.1.5 Nested Meta-Nodes

The body of a meta-node can contain other meta-node definitions nested inside it. These meta-nodes are local to the body, and
can only be used inside it, even if the same meta-node identifier appears in an expression outside the body. If a meta-node with
the same identifier is already defined at global scope, the nested meta-node shadows it in the scope of the body. This means that
references to the meta-node within the body refer to the nested meta-node and not the global node.

Example: Factorial with Nested Tail-Recursive Helper Meta-Node

factorial(n) : {
`iter` is local to `factorial`
iter(n, acc) : {

case (
n > 1 : iter(n - 1, n * acc),
acc

)
}

iter(n, 1)
}

3.2 Recursive Meta-Nodes

Meta-nodes may be recursive and mutually recursive, i.e. when a meta-node f contains an instance of another meta-node g in its
definition, and g contains an instance of f in its definition.

Each call to a meta-node consumes an amount of stack space. Further calls, within the meta-node, increase the amount of stack
space if they are strictly evaluated. However, if a call to a meta-node is conditionally evaluated, i.e. lazily, it does not increase
the amount of stack space used, since a thunk is returned, rather than the final result, thus freeing the amount of stack space used
by the current call. See Section 2.5.

The following are examples of meta-nodes in which one or more of the arguments are evaluated lazily:

• In the if meta-node, from the core module, the if-true and if-false arguments are evaluated lazily since only one
of the arguments is actually evaluated, depending on the value of the first test argument. The test argument is evaluated
strictly as its value is always required in order to compute the return value of the meta-node.

if(test, if-true, if-false)

• In the and and or meta-nodes, from the core module, the first argument is strictly evaluated however the second is lazily
evaluated, as whether it is actually evaluated depends on the value of the first argument.

and(a, b)
or(a, b)

3.3 Outer Node References

The value of a node, declared in the global scope, can be referenced from within a meta-node, either directly by its identifier,
as described in Local Nodes, or with the outer node reference operator (..). This is a special operator which takes a node
identifier as an argument and searches for a node with that identifier, in each enclosing scope, starting from the scope in which
the meta-node is defined. The first node found is referenced.

Note
It is not necessary for the node to have been declared prior to the meta-node definition, as meta-node definitions are only
processed after all declarations in the source file have been processed. However, in general the node should be declared in
the same source file.

Tridash 0.10 Reference Manual 23 / 78

Example

n

..(n) references the global node `n`
addn(n): n + ..(n)

Referenced outer nodes, whether implicitly or by the .. operator, are treated as additional hidden arguments, that are added
to the argument list of each instance of the meta-node. The result is that any change in the values of the referenced nodes, will
trigger a value update in each instance of the meta-node.

The previous example can be thought of as:

Not valid syntax.

Illustrates that outer node references are equivalent to additional
arguments.

addn(n, ..(n)) : n + ..(n)

Thus the value of n is appended to the argument list of all instances of addn, e.g. addn(node) becomes addn(node, n).

Meta-nodes reference all outer nodes referenced by the meta-nodes which are used in their body. In the previous example, if a
meta-node makes use of addn, it will also reference the node n declared in the global scope.

Important
Whilst the value of an outer-node can be referenced from within the body of a meta-node, bindings with the node as
the target cannot be established, from within the body of the meta-node.

3.4 External Meta-Nodes

External meta-nodes are meta-nodes without a definition, which are used to invoke functions defined outside of Tridash code.
The special /external declaration creates a meta-node without a definition.

Syntax

/external(id, args...)

id The meta-node identifier

args The argument list

The argument list has to be provided in order for the arity of the meta-node to be known. The same rules apply for external
meta-node argument lists as for ordinary meta-node argument lists. Symbols designate required arguments, arguments of the
form :(arg, value) designate optional arguments and ..(rest) designates a rest argument. The argument identifiers,
however, do not name local nodes.

An external definition for the meta-node has to be provided, and linked with the generated code. In the JavaScript backend,
instances of the meta-node are compiled to a call to the JavaScript function with the name given by the value of the js-name
attribute. If the js-name attribute is not set, the result is a compilation error indicating that the JavaScript backend does not
support the external meta-node.

Tridash 0.10 Reference Manual 24 / 78

3.5 Higher-Order Meta-Nodes

An atom node expression consisting of the meta-node itself references the meta-node’s function as a value. This function can be
passed to other meta-nodes as an argument, or bound to another node.

In a functor expression, in which the operator is not a meta-node but is an ordinary node, the function stored in the node’s value
is called. If the operator node does not evaluate to a function, the entire functor node evaluates to a failure of type Type-Error,
see Section 2.7. If the function is invoked with more, or less, arguments than it expects,the functor node evaluates to a failure of
type Arity-Error

Example: Binding Meta-Node to other Nodes

inc(x) : x + 1

inc -> f v1
f(a) -> x v2
v1 Value function of inc meta-node bound to f node.v2 Function stored in f meta-node applied on argument a.

See Section 3.3 for an example in which a meta-node is passed as an argument to another meta-node.

The function of a meta-node which does not have optional arguments or outer nodes is effectively a constant, as is the case with
the inc meta-node in the example above. If, however, the meta-node references outer nodes, a reference to the meta-node’s
function also references the values of the outer nodes. As such, if a node is bound to the meta-node’s function, a binding between
the outer nodes and the node is also established.

Example: Reference Meta-Node Function with Outer Nodes

Increments `x` by the global `delta`
inc(x) : x + delta

inc -> f
f(a) -> x

In the example, above, node f is bound to the value function of inc. However, since inc references the global delta node,
a binding between f and delta is also established. The value function of f creates a function which invokes the inc with the
value of delta. As a result, when the value of delta changes, the value of f is recomputed, and likewise the value of f(a)
is recomputed.

The same semantics apply for optional arguments with default values which are not constant literals.

3.6 Macro Nodes

A macro-node is a meta-node which is evaluated at compile-time with the result interpreted as a Tridash node declaration.

A meta-node is marked as a macro-node by setting the macro attribute to true. Once set, the meta-node’s function will be
evaluated when each instance of the meta-node is processed. The arguments passed to the function are the raw argument node
expressions of the functor node expression.

Tip
Attributes are set on meta-nodes in the same way as they are set for ordinary nodes. The macro attribute of a meta-node f is
set to true, with the following declaration:

/attribute(f, macro, True)

Atom node expressions are represented by a special symbol type and functor node expressions are represented as a list with the
operator in the first element of the list.

The return value of the meta-node function is processed as though it is a parsed node declaration appearing in source code.

Tridash 0.10 Reference Manual 25 / 78

3.6.1 Literal Symbols

The special /quote operator returns its argument, treated as a literal symbol rather than a node expression.

Tip
The ’ macro from the core module is the preferred shorthand for the /quote operator.

Example

This is interpreted as the literal symbol `x` rather than the node
with identifier `x`.

/quote(x)

The following is a shorthand for the above
'(x)

These can be used inside macro nodes to insert literal node or operator names.

Example: Definition of ’ macro

'(thing) :
list(/quote(/quote), thing)

/attribute(', macro, True)

3.6.2 Node References

Generally a macro-node expands to a declaration involving some other meta-node. The meta-node might not be located in the
same module, see Section 4, as the module in which the macro-node instance occurs. Using the quote operator to generate a
declaration involving the meta-node may result in a compilation error, if the meta-node is not present in the module in which the
macro-node instance occurs, or may result in a node declaration involving an entirely different meta-node, if the module contains
a node with the same identifier.

Node objects can be referenced directly with the node reference operator, &. When the declaration returned by a macro-node
contains a raw node object, no node lookup is done and the raw node object is used as though it has been returned by node
lookup. This is useful in macros as the node is looked up once in the module containing the macro-node’s definition.

Example: Definition of <- Macro

<-(target, src) :
list(&(->), src, target)

/attribute(<-, macro, True)

The <- macro function, in the example above, returns a functor expression where the operator is the node object ->. When the
functor expression is processed, the operator is taken to be the -> node, rather than the node with identifier -> in the module in
which the instance is processed.

Any node can be referenced including ordinary nodes and macro-nodes. Special operators, however, cannot be referenced and
have to be returned as quoted symbols instead. There is no issue with directly quoting the special operator’s identifier, in
expressions returned by macros, as there is for meta-nodes since the meaning of a special operator cannot be overridden and does
not change with the module. Most of the special operators mentioned till this point, which are not an identifier prefixed with /,
such as ->, :, &, ., .. are actually builtin macro nodes which expand to an internal special declaration, thus can be referenced
with the & operator. Special operators beginning with /, such as /attribute, /operator, /module are actual special
operators and cannot be referenced with &.

When a raw node referenced occurs in code which is intended to be evaluated at runtime, rather than during macro expansion,
the runtime node object, of the node, is referenced. The nature of this object is dependent on the backend.

Tridash 0.10 Reference Manual 26 / 78

3.7 Instances as Targets

By default, a meta-node instance appearing as the target of a binding, that is on the right hand side of the -> operator, will result
in a compilation error. You may have noticed, however, that some meta-nodes in the core module, can also appear as targets of a
binding, particularly to-int, to-real and to-string. This is achieved by setting the target-node attribute.

The target-node attribute stores the meta-node, which is applied on the value of the meta-node instance, in order to compute
the value of the arguments. When the target-node attribute is set, a binding is established between the meta-node instance,
as the dependency, and each argument node, as the observer. The function of the binding context is set to the meta-node stored
in the target-node attribute.

Note
The target-node meta-node is looked up immediately when the attribute is set, and in the same module in which the
/attribute declaration is processed.

As an example consider a meta-node f with the target-node attribute set to g. A declaration of the form:

x -> f(arg)

results in the following binding also being established, alongside the main binding of arg -> f(arg):

g(f(arg)) -> arg

Note
The functor node g(f(arg)) is not created, rather f(arg) is bound to arg directly and g is set as the value function.

This is useful for creating invertable meta-nodes where instead of computing a result given the values of the argument nodes, the
values of the argument nodes can be computed given the result. This is achieved by binding to the meta-node instance, with the
target-node attribute set to the inverse function.

The to-int meta-node from the coremodule has its target-node attribute set to int. Thus the binding x -> to-int(y),
will result in the value of y being set to the value int(x), on changes in the value of x.

Caution
In order for the bindings to the argument nodes, to be established, the /attribute declaration, which sets the
target-node attribute, must occur before between the definition of the meta-node and its first instance.

3.8 Target Node Transforms

The target-node attribute allows for a binding of a simple function to be established in the reverse direction, from the meta-
node instance to its arguments. However, it lacks the functionality for setting a different function for each argument or generating
more complex binding declarations.

The target-transform attribute allows a meta-node to be set as the function which is called whenever an instance of the
meta-node appears as the target of a binding. The function is called with two arguments: the source node of the binding and
the functor expression, which appears as the target of the binding. The function should return a declaration which is processed
instead of the binding declaration. The result is processed as though it appears at top-level and unlike with a macro-node, the
result is not substituted directly in the place of the meta-node instance.

Note
The source argument is not necessarily the actual source node declaration but is generally an atom node, with a randomly gen-
erated identifier, which should serve as the source node for the binding declarations generated by the target-transform
node.

Tridash 0.10 Reference Manual 27 / 78

4 Modules

Modules provide a means of avoiding name collisions between nodes. A module is a namespace which contains all global nodes,
including meta-nodes, created in it. A node with identifier x in a module m1 is distinct from a node with the same identifier x in
another module m2.

4.1 Creating Modules

Each new node, that is created as a result of processing a declaration in the source file, is added to the current module. Initially
the current module is a nameless init module until it is changed explicitly.

The current module can be changed using the special /module operator, which takes the identifier of the module as its only
argument. If there is no such module a new module is created.

Example

Change to module with identifier `mod1`
/module(mod1)

Nodes `a` and `b` added to `mod1`
a -> b

Change to module with identifier `mod2`
/module(mod2)

Nodes `a` and `b` added to `mod2`
Distinct nodes from nodes `a` and `b` in `mod1`
a -> b

Note
Module identifiers reside in a different namespace from node identifiers, thus there is no risk of collision between a node and
module with the same identifier, unless a pseudo-node for the module is added to the module containing the node.

Note
Modules reside in a single global, flat namespace. Hierarchical relations between modules have to be faked with a separator
such as /, e.g. module/submodule.

4.2 Referencing Nodes in Different Modules

There are two ways to reference a node in a another module, different from the current module. One way is to create a pseudo-
node for the module in the current module. Nodes in the module can then be referenced as subnodes of the module’s pseudo-node.

4.2.1 Module Pseudo-Nodes

The special /use operator creates pseudo-nodes for the modules passed as arguments. The pseudo-nodes are created with the
same identifiers as the modules.

Note
Module pseudo-nodes are referred to as such, since syntactically they are the same as any other node, however the value of a
module pseudo-node cannot be referenced nor can bindings involving it be established.

Syntax

Tridash 0.10 Reference Manual 28 / 78

/use(mod1, mod2, ...)

Caution
Creating a pseudo node in a module, which contains a node with same identifier as the pseudo-node, results in a
compilation error.

Nodes from the used modules can then be referenced as subnodes of the module pseudo nodes.

Example

/module(mod1)

a -> b

/module(mod2)
/use(mod1)

Reference node `b` from module `mod1`
mod1.b -> b
x -> mod1.b

Meta-nodes from a different module can be also referenced as subnodes of the module pseudo-node.

Example

/module(mod1)

add(x, y) : x + y

/module(mod2)
/use(mod1)

Use the `add` meta-node from module `mod1`
mod1.add(a, b) -> c

Tip
Nodes referenced from other modules, can appear both as dependencies or observers of bindings.

Important
Referencing a subnode of a module pseudo-node does not result in the automatic creation of a node in that module.
Referencing a node that does not exist in the module results in a compilation error.

A pseudo-node with a different identifier, from the identifier of the module, can be created using the special /use-as operator.
This is useful for when the module identifier is too long to type out repeatedly, or there is already a node, in the current module,
with the same identifier.

the /use-as operator takes two arguments, the identifier of the module and the name of the pseudo-node to create in the current
module:

/use-as(module-name, pseudo-node-name)

The above examples can be rewritten using /use-as declarations:

Example

Tridash 0.10 Reference Manual 29 / 78

/module(mod1)

a -> b

/module(mod2)
/use-as(mod1, m1)

Reference node `b` from module `mod1`
m1.b -> b
x -> m1.b

Example
/module(mod1)

add(x, y) : x + y

/module(mod2)
/use-as(mod1, m1)

Use the `add` meta-node from module `mod1`
m1.add(a, b) -> c

4.2.2 Importing Nodes

The second approach to referencing a node, residing in another module, is to add it directly to the current module. With this
approach there is no need to reference the node as a subnode of a module pseudo-node. This is referred to as importing the node
and is achieved using the /import operator.

The /import operator adds the identifiers of nodes, residing in another module, to the current module. The result is that the
node can be referenced directly by its identifier, as though it were declared in the current module.

The /import operator has two forms:

• A short form that imports all the nodes exported from another module. Takes the module identifier as its only argument.

• A long form that can be used to import specific nodes. The first argument is the module identifier, the following arguments are
the identifiers of the nodes to import

Syntax
Short form: Import all nodes exported from `module`
/import(module)

Long form: Import only the nodes listed in the arguments after the
module identifier.
/import(module, node1, node2, ...)

Example: Long form
/module(mod1)

a -> b

/module(mod2)

Import node `b` from `mod1`
/import(mod1, b)

Node `b` is the same `b` as in `mod1`
b -> a
x -> b

Tridash 0.10 Reference Manual 30 / 78

The short form only imports those nodes which are explicitly exported from the module. Nodes are explicitly exported from the
current module with the /export operator which simply takes the identifiers of the nodes to export as arguments.

Syntax

/export(node1, node2, ...)

Each /export declaration adds (does not replace) nodes, that are in the arguments, to the exported nodes of the current module.

Example: /export and short form /import

/module(mod1)

a -> b

Export node `b`
/export(b)

/module(mod2)
Import all nodes exported from `mod1`
/import(mod1)

Node `b` is the same `b` as in `mod1`
b -> a
x -> b

Meta-node Example: /export and short form /import

/module(mod1)

add(x, y) : x + y

/export(add)

/module(mod2)
/import(mod1)

Use the `add` meta-node from module `mod1`
add(a, b) -> c

A side effect of /import is that if the identifier of an imported node, whether imported by the long or short form of /import,
is registered as an infix operator in the module, from which it is being imported, it’s entry in the module’s operator table is copied
over to the current module. This allows the operator to be placed in infix position, in the current module.

Note
All nodes in the builtin module, which contains the special operators mentioned so far (->, :, .., &, .), are automatically
imported into the init module.

4.2.3 Direct References

It may be necessary to reference a node in another module without creating a pseudo-node, for its module, and without importing
it in the current module. The special /in operator directly references a node in another module by the module and node
identifiers.

Syntax

/in(module-id, node-id)

The first argument is the identifier of the module containing the node, and the second argument is the identifier of the node.

Tridash 0.10 Reference Manual 31 / 78

Important
module-id is the identifier of the module itself, and not the identifier of a module pseudo-node.

Example: /in Operator

/module(mod1)

a -> b

/module(mod2)

Reference node `b` in `mod1` directly
/in(mod1, b) -> a
x -> /in(mod1, b)

Example: /in Operator

/module(mod1)

add(x, y) : x + y

/module(mod2)

Use the `add` meta-node from module `mod1`
(/in(mod1, add))(a, b) -> c

4.3 Operator Table

Each module may register a number of node identifiers as infix operators. This means that those identifiers may appear in infix
position in declarations parsed while the module is the current module. The module’s operator table stores the identifier, prece-
dence and associativity of each infix operator. See Section 1.2 for more information about infix operators, operator precedence
and associativity.

Initially the operator table of each module contains a single entry which is the special entry for function application. The
precedence of function application controls whether an expression is treated as the operator of a functor or the operand of an infix
expression.

Note
The precedence of function application is set to 900. This value cannot be changed.

Example: Precedence of Function Application

If `.` has a higher precedence than function application, the
following is parsed to: ((. m1 add) a b)

If `.` has a lower precedence than function application, the
following is parsed to: (. m1 (add a b))

m1.add(a, b)

Tridash 0.10 Reference Manual 32 / 78

4.3.1 Registering Infix Operators

New infix operators can be registered using the special /operator declaration. This declaration modifies the operator table of
the current module.

Syntax

/operator(identifier, precedence [, (left | right)])

The first argument is the node identifier to register as an infix operator. The second argument is the precedence as an integer
value. The third argument specifies the associativity. This is either the identifier left or right for left or right associativity. If
the third argument is omitted, left associativity is assumed.

Note
The identifier does not have to name a node or meta-node that exists at the time the /operator declaration is processed.
The table only stores the identifier for syntactic transformations, no information about the actual node is stored.

An /operator declaration adds an entry to the current module’s operator table if it does not already contain an entry for the
identifier. If the table already contains an entry for the identifier, the precedence and associativity values of the existing entry are
replaced with those given in the arguments to the /operator declaration.

Note
The precedence and associativity of all operators can be changed, with the exception of function application.

When a node is imported into the current module and there is an entry, for the node’s identifier, in the operator table of the
module, from which the node is being imported, the entry is copied over into the current module’s operator table, replacing any
existing entries for the identifier.

Example: + infix operator from core module

Register `+` as infix operator
/operator(+, 100, left)

Now `+` can appear in infix position
a + b

It can also still appear in prefix position
+(a, b)

5 Core Module

The core module provides the language primitives and the standard library.

5.1 Literals

5.1.1 Macro-Node: ’(x)

Interprets x as a literal symbol rather than a node declaration. See Literal Symbols.

The same symbol object is always returned for a given symbol name.

x An atom node expression.

Tridash 0.10 Reference Manual 33 / 78

Pattern Matching

Matches the literal symbol x. See Pattern Matching.

5.1.2 Macro-Node: c(x)

Returns x interpreted as a literal character.

• If x is a symbol of one character, the character is returned.

• If x is a string, the first character in the string is returned.

• If x is an integer in the range 0 — 9, the character corresponding to the digit is returned.

x The value to convert to a character.

Pattern Matching

Matches the character literal produced by the given argument. See Pattern Matching.

5.1.3 Macro-Node: &(node)

Returns the raw node object corresponding to the node with identifier node. See Node References.

node The node identifier, which can be any valid node expression. The expression is processed in the
module in which the macro node instance occurs.

5.2 Bindings

5.2.1 Macro-Node: ->(source, target)

Establishes a binding between node source and node target.

source The source node.

target The target node.

Note
Registered as an infix operator with precedence 10 and right associativity.

5.2.2 Macro-Node: <-(target, source)

Establishes a binding between node source and node target.

Same as -> however the argument order is reversed with the first argument being the target node and the second argument being
the source node.

target The target node.

Tridash 0.10 Reference Manual 34 / 78

source The source node.

Note
Registered as an infix operator with precedence 10 and left associativity.

5.2.3 Macro-Node: @(node, context : ’(default))

Indicates an explicit context to which bindings, involving node as the target, should be established.

When the @ expression appears as the target of a binding, the binding to node is established in the context with identifier
context, see Section 2.6. The context identifier may be omitted in which case the identifier default is assumed.

context may also be a functor of the form when(context-id, type), where context-id is the context identifier and
type is a node, of which the value is interpreted as a failure type. In this case the binding will only be activated if the failure
type, of the previous binding in the context, is equal to type by =. See Conditionally Active Bindings based on Failure Type. If
context-id is omitted, that is context is of the form when(type), the identifier default is assumed.

node The node.

context The context identifier, or when expression, see above.

Note
Registered as an infix operator with precedence 800 and left associativity. The when symbol is also registered as an infix
operator with precedence 850 and left associativity.

5.2.4 Macro-Node: ::(node, state)

When appearing as the target of a binding, a binding is established to node which is only active when node is in the state with
identifier state.

state may also be a functor of the form from => state, in which case the binding is only active when the state of node
changes from the state with identifier from to the state with identifier to.

See Section 2.11 for more information.

node The node.

state The state identifier or => expression, see above.

Note
Registered as an infix operator with precedence 700 and left associativity. The => symbol is also registered as an infix operator
with precedence 750 and left associativity.

5.3 Meta-Node Definitions

5.3.1 Macro-Node: :(id(args...), body)

Defines a meta-node with identifier id, argument list args and definition body. See Section 3.

Tridash 0.10 Reference Manual 35 / 78

id Meta-node identifier.

args Comma-separated list of node identifiers, to which the meta-node arguments are bound.

body Node expression making up the definition of the meta-node. If the definition consists of more than a
single expression, it should be enclosed in braces, see Node Lists.

Note
Registered as an infix operator with precedence 5 and right associativity.

5.3.2 Macro-Node: ..(node)

Explicitly references a node defined in the enclosing scope of the meta-node. See Section 3.3.

node The node identifier, which can be any valid node expression.

5.4 Failures

5.4.1 Meta-Node: fail(:(type))

Returns a failure with a given failure type.

type (Optional)
The failure type. If not provided the failure returned has no type.

5.4.2 Meta-Node: fail-type(x)

Returns the failure type of x.

Returns a failure if x does not evaluate to a failure or evaluates to a failure with no type.

x The value of which to return the failure type.

5.4.3 Meta-Node: fails?(x)

Returns true if x fails to evaluate to a value.

x The value to test for failure.

Pattern Matching

Matches if the source node evaluates to a failure. If the argument x is provided matches only failures of type x otherwise matches
any failure. See Pattern Matching.

5.4.4 Meta-Node: ?(x)

Returns true if x evaluates to a value, false if x fails to evaluate to a value.

Tridash 0.10 Reference Manual 36 / 78

x The value to test for failure.

5.4.5 Meta-Node: fail-type?(x, type)

Tests for failure with a given type.

Returns true if x fails with failure type equal to type, by =. Returns false if the failure type of x is not equal to type or x does
not fail.

x The value to check.

type The failure type.

5.4.6 Meta-Node: !!(x)

Evaluates to true if x evaluates to a value. If x evaluates to a failure, evaluates to the failure value.

x The value to test for failure.

5.4.7 Meta-Node: !-(test, value)

Returns value if test does not fail. If test fails, the failure is returned.

test The value which is checked for failure.

value The value which should be returned if test does not fail.

5.4.8 Macro-Node: !(functor)

Tests that each argument of a functor expression does not fail, before evaluating the expression.

If at least one argument fails, then the entire functor node fails.

functor The functor expression.

5.4.9 Meta-Node: catch(try, catch, :(test))

Returns the value of try if it does not evaluate to a failure. If try evaluates to a failure returns the value of catch.

try
The value, which is returned if it does not evaluate to a failure.

catch
The value, which is returned when try evaluates to a failure.

test
An optional function, which is applied on the failure type of try. If the function returns true, the value of catch is
returned otherwise the value of try is returned.

Tridash 0.10 Reference Manual 37 / 78

5.5 Builtin Failure Types

5.5.1 Failure Type Node: No-Value

Failure type representing the absense of a value.

Optional meta-nodes arguments, for which no value is provided, are bound to a failure of this type.

Node No-Value! is bound to a failure of this type.

5.5.2 Failure Type Node: Type-Error

A failure of this type is returned when an argument to a meta-node is not of the expected type.

Node Type-Error! is bound to a failure of this type.

5.5.3 Failure Type Node: Index-Out-Bounds

A failure of this type is returned when attempting to access an element at an index that is outside the bounds of the list or string.

Node Index-Out-Bounds! is bound to a failure of this type.

5.5.4 Failure Type Node: Invalid-Integer

A failure of this type is returned by int when a string, from which an integer cannot be parsed, is provided as an argument.

Node Invalid-Integer! is bound to a failure of this type.

5.5.5 Failure Type Node: Invalid-Real

A failure of this type is returned by real when a string, from which a real number cannot be parsed, is provided as an argument.

Node Invalid-Real! is bound to a failure of this type.

5.5.6 Failure Type Node: Arity-Error

A failure of this type is returned when a meta-node is invoked indirectly, by a meta-node reference see Section 3.5, with an
incorrect number of arguments.

Node Arity-Error! is bound to a failure of this type.

5.6 Arithmetic

5.6.1 Meta-Node: +(x, y)

Computes the sum of x and y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 100 and left associativity.

Tridash 0.10 Reference Manual 38 / 78

5.6.2 Meta-Node: -(x, :(y))

Computes the difference of x and y.

If y is not provided, returns the negation of x, i.e. x multiplied by -1.

x
A number.

y (Optional)
A number.

Note
Registered as an infix operator with precedence 100 and left associativity.

5.6.3 Meta-Node: *(x, y)

Computes the product of x and y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 200 and left associativity.

5.6.4 Meta-Node: /(x, y)

Computes the quotient of x and y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 200 and left associativity.

5.6.5 Meta-Node: %(x, y)

Computes the remainder of the division of x by y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 200 and left associativity.

Tridash 0.10 Reference Manual 39 / 78

5.7 Comparison

5.7.1 Meta-Node: <(x, y)

Returns true if x is less than y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 50 and left associativity.

5.7.2 Meta-Node: <=(x, y)

Returns true if x is less than or equal to y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 50 and left associativity.

5.7.3 Meta-Node: >(x, y)

Returns true if x is greater than y.

x A number.

y A number.

Note
Registered as an infix operator with precedence 50 and left associativity.

5.7.4 Meta-Node: >=(x, y)

Returns true if x is greater than or equal to y.

x A number.

y A number.

Tridash 0.10 Reference Manual 40 / 78

Note
Registered as an infix operator with precedence 50 and left associativity.

5.7.5 Meta-Node: =(a, b)

Returns true if a is equal to b.

• Numbers are equal if they represent the same numeric value.

• Characters are equal if they represent the same character.

• Strings are equal if they have the same contents.

• Otherwise a and b are equal if they evaluate to the same object.

x A value.

y A value.

Note
Registered as an infix operator with precedence 50 and left associativity.

5.7.6 Meta-Node: !=(a, b)

Returns true if a is not equal to b.

See = for the rules of equality.

x A value.

y A value.

Note
Registered as an infix operator with precedence 50 and left associativity.

5.8 Logical Operators

5.8.1 Meta-Node: and(x, y)

Logical AND.

Returns True if x and y evaluate to True. Returns False otherwise.

x A Boolean value

y A Boolean value

Tridash 0.10 Reference Manual 41 / 78

Note
Registered as an infix operator with precedence 25 and left associativity.

Pattern Matching

Matches if both the nested patterns in x and y match the source node. See Pattern Matching.

5.8.2 Meta-Node: or(x, y)

Logical OR.

Returns True if either x or y evaluate to True. Returns False if both x and y evaluate to False.

x A Boolean value

y A Boolean value

Note
Registered as an infix operator with precedence 20 and left associativity.

Pattern Matching

Matches if at least one of the nested patterns in x and y match the source node. Both the bindings generated by the patterns x
and y are established if the corresponding pattern condition matches. See Pattern Matching.

Note
This pattern matches even if not all its nested patterns have matched.

5.8.3 Meta-Node: not(x)

Logical NOT.

Returns True if x evaluates to False.

x A Boolean value

Pattern Matching

Matches if the nested pattern x does not match. The bindings generated by x are not established by this pattern. See Pattern
Matching.

Note
Since this binding does not establish any bindings, it is treated as a constant pattern and may only appear nested inside other
patterns.

Tridash 0.10 Reference Manual 42 / 78

5.9 Selection Operators

5.9.1 Meta-Node: if(condition, true-value, :(false-value))

Returns true-value if condition is True otherwise returns false-value.

If false-value is not provided, a failure is returned if condition evaluates to False.

condition
The condition.

true-value
Value to return if condition is true.

false-value (Optional)
Value to return if condition is false. If not provided defaults to a failure of type No-Value.

5.9.2 Macro-Node: case(..(clauses))

<clause> = <condition> : <value>

Expands to nested if expressions.

Each argument is a clause is of the form condition : value. The case expression evaluates to the value corre-
sponding to the first clause of which the condition node evaluates to True. The final clause may also be of the form value,
in which case it becomes the default value, to which the case expression evaluates if the conditions of all the other clauses
evaluate to False.

clauses The clauses.

Example

case(
a < b : a,
b >= a : b

)

Is equivalent to:

if(a < b, a, if(b >= a, b))

Example with default value

case(
a < b : -1,
b > a : 1,
0

)

Is equivalent to:

if(a < b, -1, if(b > a, 1, 0))

5.9.3 Node True

The value of this node represents Boolean True.

Tridash 0.10 Reference Manual 43 / 78

5.9.4 Node False

The value of this node represents Boolean False.

5.10 Types

5.10.1 Meta-Node: int(x)

Converts x to an integer value.

• If x is an integer returns x.

• If x is a real returns x with the fractional part truncated.

• If x is a string, attempts to parse an integer from x. Returns the parsed value if successful otherwise returns a failure of type
Invalid-Integer.

If x is neither of the above returns a failure of type Type-Error.

x The value to convert to an integer.

Pattern Matching

Matches if the source node is an integer, in which case x is matched to the integer value. See Pattern Matching.

5.10.2 Meta-Node: real(x)

Converts x to a real number value.

• If x is an integer or real returns x.

• If x is a string, attempts to parse a real number from x. Returns the parsed value if successful otherwise returns a failure of
type Invalid-Real.

If x is neither of the above returns a failure of type Type-Error.

x The value to convert to a real.

Pattern Matching

Matches if the source node is a real, in which case x is matched to the real value. See Pattern Matching.

5.10.3 Meta-Node: string(x)

Converts x to a string.

x The value to convert to a string.

Tridash 0.10 Reference Manual 44 / 78

Pattern Matching

Matches if the source node is a string, in which case x is matched to the string value. See Pattern Matching.

5.10.4 Meta-Node: to-int(x)

Converts x to an integer value.

Same as int however with the target-node attribute set to int. As such, in the following:

a -> to-int(b)

Node b is set to the value of a converted to an integer.

x The value to convert.

5.10.5 Meta-Node: to-real(x)

Converts x to an real number value.

Same as real however with the target-node attribute set to real. As such, in the following:

a -> to-real(b)

Node b is set to the value of a converted to a real number.

x The value to convert.

5.10.6 Meta-Node: to-string(x)

Converts x to an integer value.

Same as string however with the target-node attribute set to string. As such, in the following:

a -> to-string(b)

Node b is set to the value of a converted to a string.

x The value to convert.

5.10.7 Meta-Node: int?(x)

Returns true if x is an integer.

x The value to test.

5.10.8 Meta-Node: real?(x)

Returns true if x is a real valued number.

x The value to test.

Tridash 0.10 Reference Manual 45 / 78

5.10.9 Meta-Node: string?(x)

Returns true if x is a string.

x The value to test.

5.10.10 Meta-Node: symbol?

Returns true if x is a symbol.

x The value to test.

5.10.11 Meta-Node: char?

Returns true if x is a character.

x The value to test.

5.10.12 Meta-Node: inf?(x)

Returns true if x is either positive or negative infinity.

x The value to test.

5.10.13 Meta-Node: NaN?(x)

Returns true if x is a NaN (Not a Number) value.

x The value to test.

5.11 Lists

Lists are represented by a special cons type, in which the head stores the first element of the list and the tail stores the list of
remaining elements. Neither the head nor the tail are evaluated until they are actually referenced and used.

The empty list is represented by the value of the node Empty.

5.11.1 Meta-Node: cons(head, tail)

Creates a list with the head as the first element and tail as the list of remaining elements.

head The first element of the list.

tail The list containing the remaining elements after the first.

Tridash 0.10 Reference Manual 46 / 78

Pattern Matching

Matches if the source node is a non-empty list, in which case head is matched to the head of the list and tail is matched to the
tail of the list. See Pattern Matching.

5.11.2 Meta-Node: head(list)

Returns the head (first element) of a list.

If list is the empty list, returns a failure of type Empty.

If list is not a list returns a failure value of type Type-Error.

list The list.

5.11.3 Meta-Node: tail(list)

Returns the tail, the list containing the elements after the first element, of a list.

If list is the empty list, returns a failure of type Empty.

If list is not a list returns a failure value of type Type-Error.

list The list.

5.11.4 Meta-Node: cons?(thing)

Returns true if thing is a list of at least one element, false otherwise.

Note
Does not return true if thing is the empty list.

list The list.

5.11.5 Node: Empty

The value of this node represents the empty list.

5.11.6 Node: Empty!

The value of this node is a failure of type Empty. This failure is returned when attempting to access the head or tail of an empty
list.

5.11.7 Meta-Node: list(..(xs))

Creates a list with elements xs.

xs The list elements.

Tridash 0.10 Reference Manual 47 / 78

Pattern Matching

Matches if the source node is a list of the same size as xs, in which case each argument in xs is matched to the corresponding
list element. See Pattern Matching.

5.11.8 Meta-Node: list*(..(xs))

Creates a list containing, as elements, all the arguments in xs excluding the last. The last argument in xs is treated as a list
containing the remaining elements.

xs The list elements, with the last argument being the list containing the remaining elements.

Pattern Matching

Matches if the source node is a list of at least one less elements that the number of elements in xs. The arguments, excluding the
last, are matched to the corresponding elements in the list with the last argument being matched to the remaining list elements.
See Pattern Matching.

5.11.9 Meta-Node: list!(..(xs))

Creates a list containing, as elements, all the arguments in xs.

Unlike list, if at least one of xs fails to evaluate to a value, the failure is returned.

xs The list elements.

5.11.10 Meta-Node: nth(list, n)

Retrieves the element of a list at a particular index.

Returns a failure of type Index-Out-Bounds if n is greater than the number of elements in list.

list The list.

n The index of the element to retrieved.

5.11.11 Meta-Node: append(list1, list2)

Returns a list containing the elements of list2 appended to list1.

list1 The initial list.

list2 The list which is appended onto list1.

5.11.12 Meta-Node: foldl’(x, f, list)

Folds a list to a single value, starting from the first element.

The function f is first applied on x and the head of list. Subsequently, f is applied on the result of the previous application
and the next element of list, until the end of list is reached.

Tridash 0.10 Reference Manual 48 / 78

x Initial first argument to f.

f Function of two arguments.

list List to fold.

5.11.13 Meta-Node: foldl(f, list)

Folds a list to a single value, starting from the first element.

Same as foldl’ except the head of list is used as the initial first argument to the fold function f.

f Function of two arguments.

list List to fold.

5.11.14 Meta-Node: foldr(f, list, :(x))

Folds a list to a single value, starting from the last element.

f is first applied on the last element of list and the value of x. If the x argument is not provided or x evaluates to a failure of
type No-Value, f is first applied on the last two elements of list. Subsequently f is applied on the previous element of list
and the result of the previous application, until the head of list list is reached.

If list only has a single element and x is not provided, the element is returned as is. If l is empty and x is provided, x is
returned as is.

f
Function of two arguments.

list
List to fold.

x (Optional)
Second argument to the application of f on the last element of list.

5.11.15 Meta-Node: map(f, list)

Applies a function on each element of a list.

Returns a list containing the result of applying f on each element of list in turn.

f Function of one argument.

list The list.

5.11.16 Meta-Node: filter(f, list)

Filters elements from a list.

Returns a list containing only the elements of list for which the function f returns true.

f Function of one argument, which should return true if the argument should be retained in the list or
false if it should be removed.

Tridash 0.10 Reference Manual 49 / 78

list The list to filter.

5.11.17 Meta-Node: every?(f, list)

Returns true if f returns true for every element of list.

f Function of one argument.

list The list.

5.11.18 Meta-Node: some?(f, list)

Returns true if f returns true for at least one element of list.

f Function of one argument.

list The list.

5.11.19 Meta-Node: not-any?(f, list)

Returns true if f returns false for every element of list.

f Function of one argument.

list The list.

5.11.20 Meta-Node: not-every?(f, list)

Returns true if f returns false for at least one element of list.

f Function of one argument.

list The list.

5.12 Strings

5.12.1 Meta-Node: string-at(string, index)

Returns the character at a given index in the string.

If the index is greater than the number of characters in this string, returns a failure of type Index-Out-Bounds.

string The string.

index The index of the character.

Tridash 0.10 Reference Manual 50 / 78

5.12.2 Meta-Node: string-concat(string, str1, str2)

Concatenates str2 to the end of str1.

str1 The first string.

str2 The string which is concatenated to str1.

5.12.3 Meta-Node: string->list(string)

Returns a list containing the characters in a string.

string The string.

5.12.4 Meta-Node: list->string(list)

Returns a string containing the concatenation of the elements in a list.

Each element of list is converted to a string and concatenated to the result string.

list List of elements to concatenate.

5.12.5 Meta-Node: format(string, ..(args))

Creates a formatted string, in which placeholders are replaced by the arguments in args.

The sequence %s designates a placeholder which is to be replaced by an argument. The first placeholder is replaced by the first
argument, the second with the second argument and so on. Each argument is converted to a string prior to being substituted into
the result string.

The sequence %% designates a literal % character and is thus replaced with a %.

string The format string.

args The arguments to substitute into the string.

5.13 Dictionaries

5.13.1 Meta-Node: member(dict, key)

Retrieves the value of an entry in a dictionary.

If dict does not have an entry for key a failure, of type No-Value is returned.

dict The dictionary.

key The entry key.

Tridash 0.10 Reference Manual 51 / 78

5.14 Functions

5.14.1 Meta-Node: apply(f, ..(xs))

Applies a function on an argument list.

The argument list, on which f is applied consist of each argument of xs, excluding the last, followed by each element of the last
argument of xs.

f The function to apply.

xs The arguments to apply f on.

Caution
If f is not a function or the last argument of xs is not a list, a failure of type Type-Error, is returned.

5.15 Introspection

The core/introspection module provides utility meta-nodes for introspecting the nodes comprising a program. These
meta-nodes may only be used within macro nodes, during macro expansion, as runtime definitions are not available.

5.15.1 Meta-Node: node?(thing)

Returns true if thing is a node object.

thing The thing to check whether it is a node.

5.15.2 Meta-Node: find-node(node, :(module))

Looks-up a node in a module.

Returns the node object or a failure if no node is found.

node
The node to lookup, which can be any node expression.

module (Optional)
The module in which to look-up the node. Defaults to the current module, set by the last /module declaration that is
processed.

Note
Currently there is no way to retrieve a module object, thus the module argument is not used. This functionality will be added
in a future release.

5.15.3 Meta-Node: get-attribute(node, attribute)

Retrieves the value of an attribute of a node.

Returns a failure if the attribute is not set.

Tridash 0.10 Reference Manual 52 / 78

node The node object.

attribute The attribute identifier.

5.16 Pattern Matching

Pattern matching is provided by the core module in the form of bindings involving the meta-node instance, which is to be
matched, as the target. The binding succeeds if the pattern matches, otherwise it fails.

A meta-node which supports pattern matching, has a target-node or target-transform, see Section 3.7, such that when
an instance of the meta-node appears as the target of a binding, the argument nodes are bound to the values, required in order for
the meta-node to return a value that is equivalent to the value of the source node. When there are such values, the pattern is said
to have matched. If there is no possible value for at least one argument node, all argument nodes should evaluate to failures of
type Match-Fail. In this case the pattern has not matched

Example

x -> int(y)

In the example, above, y is bound to the value of x if it is an integer, otherwise y evaluates to a failure. There is no argument
which will result in int returning a non-integer value thus if the source node, x, is not an integer the argument node, y, is bound
to a failure. Since int returns the value of its argument directly, when it is an integer, the argument node is simply bound to the
source node.

Example

x -> list(y, z)

In the example, above, y is bound to the first element of x and z is bound to the second element of x if x is a list of two
elements. These bindings will result in a list, equivalent to x, being produced when y and z are passed as arguments to the list
meta-node.

5.16.1 Nested Patterns

Patterns may be nested, that is an argument to a meta-node instance is itself a meta-node instance of which the operator meta-
node supports pattern matching. When the arguments contain one or more nested patterns, the bindings to the argument nodes
should only succeed if all nested patterns match.

Example

x -> list(int(y), z)

The example, above, is similar to the previous example except with the additional condition that the first element of x should
also be an integer. That is y is bound to the first element of x and z to the second element of x if x is a list of two elements of
which the first element is an integer.

When _ appears nested inside a pattern it matches anything and does not establish any bindings. This is used to indicate that the
value for a particular argument is unimportant.

Example

x -> list(_, y)

In the example, above, y is bound to the second element of x if it is a list of two elements. The value of the first element of x is
ignored completely.

Tridash 0.10 Reference Manual 53 / 78

5.16.2 Constant Patterns

Constant patterns comprise a constant value as opposed to a node. These patterns match when the source node is equal, by =, to
the constant value. Constant patterns do not result in any bindings being established however they do affect the condition of the
pattern in which they are nested.

Important
Constant patterns may only be used when nested inside a non-constant pattern.

Constant values include any literal constants, such as numbers, strings as well as character literals, produced by the c macro, and
literal symbols, produced by the ’ macro.

Example

x -> list(1, y, z)

In the example, above, y is bound to the second element of x and z to the third element of x if x is a list of three elements of
which the first element is equal to 1.

The following are examples of invalid uses of constant patterns:

Examples: Invalid use of Constant Patterns

Invalid as the pattern is not nested
x -> 1

Invalid as at least one argument should not be a constant.
x -> list(1, 2)

Caution
Functor nodes, of which the arguments are all constants, such as 1 + 1, are only treated as constant patterns if the
meta-node supports pattern matching. In this case the + meta-node does not support pattern matching, thus 1 + 1
is currently not treated as a constant pattern.

5.16.3 Matchers

The matcher node attribute stores a meta-node which is called to construct the pattern for a given list of arguments. The
matcher meta-node is called with two arguments: the place to be matched, which should become the source node of any bindings
established by the pattern, and the pattern functor expression itself (including the operator). The meta-node should return a
Pattern object, which is a dictionary containing the following entries:

condition
The node expression which evaluates to true if the pattern matches. This should include the conditions of the argument
nodes if they are patterns themselves.

bindings
List of bindings established by the pattern. If there are no bindings established by the pattern, then this entry should be set
to the empty list, see Empty.

Important
The bindings should not be conditioned on condition as they will be conditioned later when the node decla-
rations for the entire pattern (including the parent patterns) is constructed. See Conditional Bindings.

Tridash 0.10 Reference Manual 54 / 78

Tip
Pattern objects may be created with the Pattern meta-node.

All bindings, established by a pattern, should be established in an explicit context with identifier match, which is activated only
on failures with type Match-Fail. This allows multiple patterns to be specified on a single node, with the node being set to the
value corresponding to the binding of the first pattern that matches.

Example: Multiple Patterns

x -> int(y)
x -> list(int(y))
x -> list("x", int(y))

The example above contains multiple patterns involving a single node y.

y is bound to:

1. the value of x if it is an integer, or

2. the first element of x if it is a list of one element, which is an integer, or

3. the second element of x if it is a list of two elements, with the first element being the string value "x" and the second
element being an integer.

The following meta-nodes in the core module all have a matcher and may thus appear within patterns.

• ’

• c

• fails?

• and

• or

• not

• int

• real

• string

• cons

• list

• list*

5.17 Module: core/patterns

This module contains utilities for creating and processing patterns.

5.17.1 Meta-Node: Pattern(condition, :(binding))

Creates a Pattern object. See Matchers

condition
The node expression which evaluates to true if the pattern matches.

binding (Optional)
List of binding expressions of the bindings established by the pattern. Defaults to the empty list if not provided.

Tridash 0.10 Reference Manual 55 / 78

5.17.2 Meta-Node: get-matcher(node)

Returns the matcher function, stored in the matcher attribute of a node.

Returns a failure if the node’s matcher attribute is not set.

node The node object of which to retrieve the matcher.

5.17.3 Meta-Node: make-pattern(place, pattern)

Creates the Pattern object for a pattern expression.

Note
Can be used for any pattern, including constant patterns.

place
The place which should be matched to the pattern, i.e. the source node of the bindings established by the pattern.

pattern
The pattern expression.

Note
If pattern is a functor expression of which the operator is not a meta-node with a matcher, a Pattern with a single
binding place -> pattern, and no condition is returned.

5.17.4 Meta-Node: combine-conditions(c1, c2)

Returns an expression which is the conjunction of two expressions, by and.

c1
The first condition, on the left hand side of the and.

c2
The second condition, on the right hand side of the and.

If c1 evaluates to a failure, returns c2. If c2 evaluates to a failure, returns c1.

Tip
This is useful for creating a condition which combines the conditions of multiple argument nodes.

5.17.5 Meta-Node: conditionalize-bindings(condition, bindings)

Returns a list where each binding in bindings is conditioned on condition. See Conditional Bindings.

If condition evaluates to a failure, a condition of True is assumed, thus the bindings are not conditioned.

condition
The condition on which to condition the bindings.

bindings
List of bindings to condition.

Tridash 0.10 Reference Manual 56 / 78

5.17.6 Failure Type Node: Match-Fail

Failure type indicating that a pattern failed to match.

Node Match-Fail! is bound to a failure of this type.

5.17.7 Meta-Node: fail-match(condition)

If condition evaluates to false or to a failure, returns a failure of type Match-Fail, otherwise returns true.

condition
The pattern condition.

5.17.8 Meta-Node: make-match-bind(src, target)

Generates a binding src -> target, with target in the match context which is activated on failures of type Match-Fail.

src
The source of the binding.

target
The target of the binding.

5.17.9 Meta-Node: make-pattern-declarations(pattern)

Creates the node declarations implementing a pattern.

Returns a single node declaration.

pattern
The Pattern object for which to create the declarations.

Tip
The declaration returned by this meta-node is a suitable return value for a target-transform function. See Section 3.7.

5.18 Operator Table

Operator Precedence Associativity
. 1000 left
when 850 left
@ 800 left
=> 750 left
:: 700 left
* 200 left
/ 200 left
+ 100 left
- 100 left
< 50 left
<= 50 left
> 50 left
>= 50 left
= 50 left

Tridash 0.10 Reference Manual 57 / 78

Operator Precedence Associativity
!= 50 left
and 25 left
or 20 left
!- 15 right
-> 10 right
<- 10 left
: 5 right

6 Optimizations

This section details functionality for controlling and fine tuning the optimizations performed by the Tridash compiler.

6.1 Coalescing

A node is compiled to a runtime node object definition, which stores the details of the node’s observers, dependencies, contexts
and various other attributes. However, for efficiency, both in terms of speed and code size, not every single node is actually
compiled to a runtime node object. When possible successive nodes are coalesced (merged) into a single node, with a value
function that combines the functions of the coalesced nodes.

Node coalescing does not affect the behaviour of a program however it can effect which nodes are actually available when
interfacing with other languages.

Important
Input Nodes, see Section 2.8, are never coalesced into other nodes, as they provide the interface by which a program
receives its inputs.

Example

a + b -> x
x -> y
y + z -> output

In this example, assuming a, b and z are input nodes and output is an output node, i.e. it has no observers, the following
intermediate nodes can all be coalesced into the node output:

• a + b

• x

• y

• y + z

As a result, only the following nodes remain:

• a

• b

• z

• output

Node output has the dependencies: a, b and z with the following combined value function:

Tridash 0.10 Reference Manual 58 / 78

y + z
x + z v1
a + b + z v2
a + b + z

v1 y is substituted with its dependency xv2 x is substituted with its dependency a + b

When interfacing with Tridash, from another language, only the values of the nodes remaining after coalescing can be observed.
The only nodes guaranteed to never be coalesced into other nodes are input nodes, which are explicitly marked as such, and
output nodes, that is nodes with no observers.

To allow the value of a node, which is neither an input nor an output node, to be observed, the value of the node’s coalescable
attribute can be set to false. This guarantees that the node will never be coalesced into another node, and hence a runtime node
object will be created for it.

Example

a + b -> x
x -> y
y + z -> output

/attribute(x, coalescable, False) v1
v1 Set value of x’s coalescable attribute to false

In this example, x is guaranteed to never be coalesced into another node and is thus is available for interfacing with other
languages.

The value function of output thus becomes x + z, assuming node y is coalesced into x.

Caution
Preventing a node from being coalesced, by setting the coalescable attribute to false, may negatively impact the
performance of the program.

Caution
A node with the coalescable attribute set to false, can still be removed if it is not reachable from any input node,
and thus its value can never change from its initial value. To prevent the node from being removed, the removable
attribute should also be set to false.

Note
The coalescable and removable attributes have no effect within meta-nodes.

7 Interfacing with Other Languages

The languages that Tridash can interface to, and the foreign function interface itself, depend on the compilation target (the
compiler backend).

The current version of Tridash has two compilation targets JavaScript, and 32-bit WebAssembly (wasm32).

Tridash 0.10 Reference Manual 59 / 78

7.1 Calling External Functions

To be able to call an externally defined (defined outside Tridash code) function from Tridash, a meta-node without a definition
has to be declared. This is achieved using the /external special operator. See Section 3.4 for the operator’s syntax. Once an
external meta-node is declared, it can be used, in Tridash code, as though it is a regular meta-node.

The external meta-node has to be linked to an externally defined function, which implements the functionality of the meta-node,
for each backend. This is achieved via backend specific attributes. For the JavaScript and WebAssembly backends the attributes
are js-name and wasm-name, respectively.

7.2 Accessing and Setting Node Values

In order to access the value of a node from outside Tridash code, the node must be given a public identifier. This is done by
setting the node’s public-name attribute to a string identifier.

Example: Setting Node Public Identifier

Set public identifier of `x` to `node_x`

/attribute(x, public-name, "node_x")

Node x is now accessible outside Tridash code by the node_x identifier.

Caution
Currently, it is not checked whether multiple nodes are given the same public identifier.

7.2.1 Runtime Module Objects

A Tridash application is compiled to a single runtime module object. When targeting the JavaScript or WebAssembly backends,
this is a JavaScript object with at least the following property:

nodes
An object containing references to the runtime node objects of all publicly accessible nodes. This object contains a property
for each publicly accessible node, with the property identifier being the node’s public identifier.

The module object also provides the following member function:

set_values(values)
Set the values of multiple nodes simultaneously.

values is an array with each element being an array of the form [node, value] where node is the node’s runtime
node object and value is the value to which the node should be set.

7.2.2 Runtime Node Objects

The runtime node object provides three methods:

get_value()
Returns the value of a node.

set_value(value)
Set the value of the node to value.

Tridash 0.10 Reference Manual 60 / 78

watch(f)
Call the function f whenever the value of the node changes. The function is passed the new value of the node as its only
argument.

Important
In order to be able to set the value of a node, it must be marked as an input node, by setting its input attribute to true.
See Section 2.8.

Caution
Unless a node is an input node or an output node, that is a node with no observers, there is no guarantee that a runtime
node object is created for it, even if it is given a public identifier, due to node coalescing. To ensure that a runtime node
object is created for a node, for which a public identifier is assigned, its coalescable and removable attributes
should be set to false. See Section 6.1 for more information.

7.3 JavaScript Backend

This section details the foreign function interface of the JavaScript backend.

7.3.1 Value Types

Most Tridash primitive value types correspond directly to JavaScript primitives:

• Integers are represented by JavaScript integers.

• Reals are represented by JavaScript floating point numbers.

• Booleans are represented by JavaScript Booleans.

• Strings are represented by JavaScript strings.

• Subnode dictionaries are represented by JavaScript objects with a property for each subnode. The identifier of each property
is the corresponding subnode identifier.

The remaining value types are represented by instances of classes in the runtime library, which is contained in the Tridash
module object.

• Characters are represented by instances of the Tridash.Char class, which has one property:

chr A string containing just the character itself.

• Lists are either represented by JavaScript arrays or an internal linked list node class.

The Tridash.head and Tridash.tail functions return the head and tail of a list respectively. These functions will
return a type error failure value if the argument is not a linked list node or array.

7.3.2 Failure Values

Failure values are represented by an instance of the Tridash.Fail class, which has one property

type The failure type. This property is null if the failure does not have a type.

Tridash 0.10 Reference Manual 61 / 78

Instances of this class are thrown as JavaScript exceptions rather than being returned directly. Generally failure values are
represented by thunks, see the next section on lazy evaluation, which, when evaluated, throw a Tridash.Fail exception.

Tip
Use the Tridash.fail function, which takes one argument, the failure type (defaulting to null), to create failure values,
which are wrapped in thunks.

7.3.3 Builtin Failure Types

The following functions return a JavaScript object, which serves to identify a builtin failure type.

Tridash.Empty()
Returns the object representing the empty list.

Tridash.NoValue()
Returns the object representing the No Value failure type.

Tridash.TypeError()
Returns the object representing the Type-Error failure type.

Tridash.IndexOutBounds()
Returns the object representing the Index-Out-Bounds failure type.

Tridash.InvalidInteger()
Returns the object representing the Invalid-Integer failure type.

Tridash.InvalidReal()
Returns the object representing the Invalid-Real failure type.

Tridash.ArityError()
Returns the object representing the Arity-Error failure type.

7.3.4 Lazy Evaluation

Tridash expressions may be evaluated lazily, that is they are only evaluated at the point where they are first used. Lazily evaluated
expressions are wrapped in thunk objects, which are instances of the Tridash.Thunk class.

Thunks are created using the Tridash.Thunk constructor which takes one argument, the thunk computation function. The
thunk computation function should be a function of no arguments which computes, and returns, the thunk’s result value.

The Tridash.resolve function, of one argument, computes the value of a Tridash.Thunk, passed as the argument, if it
has not been computed already, and returns the resulting value. If the argument is not a Tridash.Thunk object it is returned
directly.

Important
Tridash.resolve repeatedly computes the value of a thunk, which is the result of computing the value of another
thunk until the result is not a thunk. This means Tridash.resolve always returns an immediate value, not a thunk
object.

Example: Resolving node value and handling failures

try {
value = Tridash.resolve(value);

// Use resolved value
...

Tridash 0.10 Reference Manual 62 / 78

}
catch (e) {

if (e instanceof Tridash.Fail) {
// Handle failure
...

}
}

7.3.5 Linking Meta-Nodes to External Functions

In the JavaScript backend, the name of the JavaScript function, which provides the implementation of an external meta-node
is given by the value of the node’s js-name attribute. This attribute must be a string which names a function that is globally
accessible to the generated JavaScript code, at the time it is run.

Example: Linking external meta-node to JavaScript function

Meta-Node of two arguments
/external(fn, a, b)

Link to JavaScript 'my_func' function
/attribute(fn, js-name, "my_func")

The function is called passing in the values of the argument nodes as arguments. If the value for an optional argument is not
provided to the meta-node, in the Tridash source, the default value is passed to the function. If the optional argument and the
arguments following it do not have default values, they are omitted in the generated function call.

Example: External meta-node with optional arguments with default value

Meta-Node with 1 required and 1 optional argument
/external(fn, a, b : 1)

Link to JavaScript 'my_func' function
/attribute(fn, js-name, "my_func")

Instance with optional argument omitted
fn(x)

This example compiles to the following call to my_func:

my_func(x, 1)

Example: External meta-node with optional arguments without default value

Meta-Node with 1 required and 1 optional argument
/external(fn, a, :(b))

Link to JavaScript 'my_func' function
/attribute(fn, js-name, "my_func")

Instance with optional argument omitted
fn(x)

This example compiles to the following call to my_func:

my_func(x)

Notice that no value is provided for the b argument since it was omitted, in the meta-node instance fn(x) and it does not have
a default value.

Rest arguments are accumulated into a single JavaScript array which is passed as the last argument to the function. If the rest
argument list is empty, the argument is omitted entirely in the generated function call.

Example: External meta-node with rest arguments

Tridash 0.10 Reference Manual 63 / 78

Meta-Node with 1 required and 1 rest argument
/external(fn, x, ..(xs))

Link to JavaScript 'my_func' function
/attribute(fn, js-name, "my_func")

Instance 1: 3 rest arguments
fn(a, b, c, d)

Instance 2: no rest arguments

Instance 1 is compiled to the following call to my_func:

my_func(a, [b, c, d])

Instance 2 is compiled to the following call to my_func:

my_func(a)

Notice no value is passed for the second argument which corresponds to the rest argument.

Each argument, passed to an external function, may either be an immediate value or a Tridash.Thunk object, in the case
of an argument which is lazily evaluated. The Tridash.resolve function should be called on each argument, of which the
value is actually used, to ensure that the immediate value is obtained.

The function should always return a value, which becomes the return value of the meta-node. This can either be an immediate
Tridash value, of one of the types specified in Value Types, or a Tridash.Thunk object.

Any failure value exception, thrown inside the function either by the function itself or while evaluating a thunk, should be caught
and wrapped in a Tridash.Thunk object which is returned from the function.

Example: Handling failures in external meta-node functions

function my_func(a) {
try {

// Resolve value of the `a` argument
// The result may be a failure value
a = Tridash.resolve(a);

// Do something with `a`
...

}
catch (e) {

// Handle failure value exception
if (e instanceof Tridash.Fail) {

// Wrap failure in thunk object and return
return new Tridash.Thunk(() => { throw e });

}

// Rethrow other exceptions
throw e;

}
}

7.3.6 Runtime Module Object

By default, when targeting the JavaScript backend, a standalone JavaScript file is produced, which assigns the nodes and
set_values properties of the runtime module object to the exports object. This file can be loaded by a JavaScript runtime
which supports the require function, such as Node.js. The properties of the module object can then be accessed as properties
of the object returned by require.

Example: JavaScript Module Object Usage

Tridash 0.10 Reference Manual 64 / 78

Load the compiled JavaScript module. Substitute `module.js` with the
path to the generated JavaScript file.

const module = require('module.js');
const node_x = module.nodes.node_x;

// Retrieve value of node_x
const value = node_x.get_value();

...

// Set value of node_x to integer 10
node_x.set_value(10);

The get_value method of the runtime node object takes a single optional argument, which if true (the default), the value of
the node is fully evaluated if it is a thunk object, representing a lazily evaluated value. If the argument is false, thunk objects are
not evaluated but are returned directly.

7.4 WebAssembly Backend

This section details calling JavaScript functions when targeting WebAssembly.

7.4.1 Memory

Tridash value types are represented by objects stored in the heap of the compiled WebAssembly module’s memory object. The
heap is managed by a tracing garbage collector, which is run whenever a memory allocation requests more space than is available.

In order for a Tridash value to be passed to a JavaScript function, and vice versa, it is has to be converted (marshalled) to an
equivalent representation using JavaScript types. This functionality is provided by the Tridash.Marshaller class in the
JavaScript component of the runtime library, which is encapsulated in the module object Tridash.

7.4.2 Value Types

Tridash value types, when converted to JavaScript value types, are represented by the following:

• Integers are represented by JavaScript integers.

• Reals are represented by JavaScript floating point numbers.

• Booleans are represented by JavaScript Booleans.

• Strings are represented by JavaScript strings.

• Arrays are represented by JavaScript arrays.

• Subnode dictionaries are represented by an instances of the Tridash.Marshaller.Object class. The subnodes
property contains an object with a property for each subnode. The identifier of each property is the corresponding subnode
identifier.

• Characters are represented by instances of the Tridash.Marshaller.Char class, which has a single property:

code The character code.

• Symbols are represented by instances of the Tridash.Marshaller.Symbol, which has a single property:

Tridash 0.10 Reference Manual 65 / 78

name The symbol name as a string.

• Linked list nodes are represented by instances of the Tridash.Marshaller.ListNode class which the following prop-
erties:

head The element stored in the node

tail The next node in the linked list

• Failure values are represented by instances of the Tridash.Marshaller.Fail class, which has a single property:

type The failure type.

• Raw node references are represented by instances of the Tridash.Marshaller.Node class, which has a single property.

id The node ID.

7.4.3 Builtin Failure Types

The following properties of the Marshaller.FailTypes represent builtin failure types as JavaScript Values:

NoValue
Represents the No Value failure type.

TypeError
Represents the Type-Error failure type.

InvalidInteger
Represents the Invalid-Integer failure type.

InvalidReal
Represents the Invalid-Real failure type.

ArityError
Represents the Arity-Error failure type.

IndexOutBounds
Represents the Index-Out-Bounds failure type.

Empty
Represents the empty list.

7.4.4 Marshaller

The Tridash.Marshaller class is responsible for converting Tridash values stored in the WebAssembly heap to equivalent
JavaScript values and vice versa. An instance of this class is automatically created when loading the WebAssembly module.

Methods

Tridash 0.10 Reference Manual 66 / 78

to_tridash(value)
Convert a JavaScript value (value), of a type listed in Value Types, returning a pointer (integer offset) to the Tridash
value with the WebAssembly memory heap.

value may also be an instance of the Marshaller.TridashValue class, which represents a value stored on the
WebAssembly heap, at the location given by the ptr property. This is useful to create arrays or list objects which contain
references to existing Tridash values.

Note
Subnode dictionaries (Tridash.Marshaller.Object instances) and raw node references
(Tridash.Marshaller.Node instances) can only be converted to Tridash values if they were obtained from
a Tridash to JavaScript value conversion.

to_js(pointer)
Convert a Tridash value, stored at location pointer within the WebAssembly heap, to a JavaScript value.

stack_push(pointer)
Push a pointer to a Tridash value onto the GC root set stack.

stack_pop()
Pop and return a pointer, to a Tridash value, from the GC root set stack.

7.4.5 Lazy Evaluation and Garbage Collection

A pointer may point to a thunk object, which represents a Tridash value which has not been computed yet. When converting a
Tridash value to a JavaScript value, all thunk objects are computed. As a result of this each conversion from Tridash to JavaScript
may trigger a garbage collection cycle. Likewise, converting a JavaScript value to a Tridash value may also trigger a garbage
collection since a new object is created on the heap.

Caution
Converting an infinite list or a cyclic object will result in an infinite loop, due to all lazily evaluated values being computed
on conversion.

When converting multiple values, of which the conversion of the first value, a, results in a garbage collection cycle being run,
the memory held by the second value, b, may be reclaimed if it is not referenced by an object in the root set. Furthermore, the
pointer to b is no longer valid due to the objects being copied to the new heap.

To overcome this problem, before converting a Tridash value to JavaScript, all pointers to other Tridash values should be pushed
onto the root set stack, using the stack_push method of Tridash.Marshaller. After the conversion the updated pointer
values should be popped off the root set stack using the stack_pop method of Tridash.Marshaller.

Important
Every call to stack_push must be balanced by a call to stack_pop.

Example: Converting Multiple Tridash Values to JS Values

/// Convert the Tridash values, pointer to by `a`, `b` and `c`.

// Push pointer `c` to root set stack
marshaller.stack_push(c);

// Push pointer `b` to root set stack

Tridash 0.10 Reference Manual 67 / 78

marshaller.stack_push(b);

// Convert Tridash value `a` to JS value
a = marshaller.to_js(a);

// Pop updated pointer `b` from stack
b = marshaller.stack_pop();

// Convert Tridash value `b` to JS value
b = marshaller.to_js(b);

// Pop updated pointer `c` from stack
c = marshaller.stack_pop();

// Convert Tridash value `c` to JS value
c = marshaller.to_js(c);

7.4.6 Linking Meta-Nodes to External Functions

The name of the JavaScript function, which provides the implementation of an external meta-node is given by the value of the
node’s wasm-name attribute. The value of this attribute may either be a symbol or string which names a global JavaScript
function, or an expression of the form module.name where module is the name of a globally accessible object, and name is
the name of the property which contains the function that implements the meta-node.

Example: Linking external meta-node to JavaScript function

Meta-Node of two arguments
/external(f, a, b)
/external(g, a, b)

Link to JavaScript 'my-func' function
/attribute(f, wasm-name, "my-func")

Link to JavaScript `func` function that is a property
of the global object `my_lib`
/attribute(g, wasm-name, my_lib.func)

The function is called with the arguments being the pointers to the values of the argument nodes, within the module’s memory
object.

If the value for an optional argument is not provided to the meta-node, in the Tridash source, and there is no default value, the
null pointer (0) is passed to the function.

Note
The to_js method of the Tridash.Marshaller class, returns the JavaScript null value when passed the null pointer.

Example: External meta-node with optional arguments without default value

Meta-Node with 1 required and 1 optional argument
/external(fn, a, :(b))

Link to JavaScript 'my_func' function
/attribute(fn, wasm-name, "my_func")

Instance with optional argument omitted
fn(x)

Tridash 0.10 Reference Manual 68 / 78

In this example, my_func will be called with the pointer to the value of x as the first argument and the null pointer (0) as the
second argument.

The function should return its result as a pointer to a Tridash value, within the WebAssembly memory object.

7.4.7 Runtime Module Object

By default, when targeting the WebAssembly backend, a JavaScript file is produced, along with the .wasm file containing the
WebAssembly module, which contains a script that loads the module. A promise, which resolves to the runtime module object
containing the nodes property and set_values member function, is assigned to the module property of the exports
object. This file can be loaded by a JavaScript runtime which supports the require function, such as Node.js. The properties
of the module object can then be accessed as properties of the object returned by require.

Note
A promise to the module object is assigned, rather than the module object itself, since WebAssembly modules are loaded
asynchronously.

The runtime module object also contains the following additional fields:

module
WebAssembly.Instance object of the compiled Tridash module.

runtime
WebAssembly.Instance object of the runtime library module.

memory
The WebAssembly memory object.

marshaller
The Tridash.Marshaller object for marshalling values to and from the compiled module’s heap memory.

Example: WebAssembly Module Object Usage

Load the compiled Wasm loader script. Substitute `module.js` with
the path to the generated JavaScript file.

const module = require('module.js')

module.then((mod) => {
const marshaller = mod.marshaller;
const node_x = mod.nodes.node_x;

// Retrieve value of node_x
const value = node_x.get_value();

...

// Set value of node_x to integer 10
node_x.set_value(10);

});

The set_value, and get_value methods, of the runtime node object, automatically marshal values to and from the We-
bAssembly module’s heap.

The get_value method, of the runtime node object, takes a single optional argument, which if false returns a raw pointer to
the Tridash value, of the node, rather than converting it to a JavaScript value. By default this argument is true.

Tridash 0.10 Reference Manual 69 / 78

8 Compiler Options

The Tridash compiler (tridashc) accepts a number of options which affect the compilation of certain files and the output code
that is generated.

View the man page for tridashc or run the command tridashc -h for details of how these options are specified.

8.1 Compilation Targets

The compilation target (or compiler backend) determines the type of output file that is generated. The compilation target is
specified using the -t command-line option or the backend output option of the build configuration file, View the tridashc
man-page for more information.

The current version of Tridash has the following targets:

• javascript

• wasm32 (32-bit WebAssembly)

8.2 Output Options

The output options control various aspects of the output code that is generated. The options accepted depends on the compilation
target.

8.2.1 JavaScript Backend

The JavaScript backend accepts the following options:

indented
If set to true, formatted JavaScript code with line breaks and indentation is generated. If false no line breaks or non-
syntactic spaces are added.

runtime-path
Path to the runtime library. If not provided, the runtime library in the Tridash installation directory is used.

runtime-linkage
Controls how the runtime library is linked with the generated code. This only has an effect when the output is an HTML
file, otherwise the runtime library is not linked to the output and has to be loaded manually.

It can be one of the following values:

static
Embed the runtime library directly inside the HTML file.

dynamic
Insert a reference to the runtime library, located at the URL given by runtime-path, inside the HTML file.

none
Do not link the runtime library. This should be used if the runtime library is linked manually by a script tag in the
HTML source.

type
Type of output that is generated. Can be one of the following:

html
Generate an HTML file with the compiled Tridash code embedded in it. The HTML source, which is referenced by
the node with identifier given by the main-ui option, is used as the template for the HTML output file.

Tridash 0.10 Reference Manual 70 / 78

js
Generate a JavaScript file containing just the compiled Tridash code. The runtime library is not loaded, thus has to
be loaded manually, and stored in the global Tridash object, prior to loading the generated JavaScript file. This is
the default.

main-ui
The identifier of the node, which references the contents of an HTML file, to use as the template for the output, when the
output type is an HTML file.

module-name
The identifier of the JavaScript variable, by which the runtime module object is referenced.

If empty (the default) and the output type is a JavaScript file, the properties of the runtime module object are assigned to the
exports object. The file can then be loaded using the require function, in a JavaScript runtime where it is supported.
When the output type is an HTML file, the runtime module object is not accessible.

When given a value, the runtime module object is assigned to the global variable with the identifier given by the value.
The JavaScript file can then be loaded using an HTML script tag.

8.2.2 WebAssembly Backend

When targeting WebAssembly (wasm32), two output files are generated:

• A WebAssembly .wasm containing the compiled Tridash code.

• A JavaScript file which contains a script that loads the WebAssembly module, as well as the runtime library module.

To use the compiled module, only the loader script has to be loaded.

The following output options are accepted.

indented
If set to true, formatted JavaScript code with line breaks and indentation is generated. If false no line breaks or non-
syntactic spaces are added.

type
Type of output that is generated.

By default a separate WebAssembly (.wasm) and JavaScript file are generated. The module loader library has to be loaded
manually.

If set to html, generate an HTML file with the compiled Tridash code embedded in it. The HTML source, which is
referenced by the HTML node with identifier given by the main-ui option, is used as the template for the HTML output
file.

main-ui
The identifier of the node, which references the contents of an HTML file, to use as the template for the output, when the
output type is an HTML file.

module-name
The identifier of the JavaScript variable, through which, the runtime module object is referenced.

If empty (the default) and the output type is not html, the properties of the runtime module object are assigned to the
exports object. The loader script can then be loaded using the require function, in a JavaScript runtime where it is
supported. When the output type is an HTML file, the runtime module object is not accessible.

When given a value, the runtime module object is assigned to the global variable with the identifier given by the value.
The loader script file can then be loaded using an HTML script tag.

linkage
Control how the WebAssembly module is linked to the loader script

This can be one of the following:

Tridash 0.10 Reference Manual 71 / 78

local
The loader script loads the WebAssembly modules from the local file system. This requires a JavaScript runtime
which provides the require function and the fs module. The paths to the compiled module and runtime library
are given by the module-path and runtime-path options, respectively.

remote
The loader script loads the WebAssembly modules from a remote location. The URLs to the compiled module and
runtime library are given by the module-path and runtime-path options, respectively.

embed
The compiled Tridash module and runtime library are embedded directly in the loader script. The paths to the
compiled module and runtime library, which need to be accessible to the compiler, are given by the module-path
and runtime-path options, respectively.

runtime-path
Path to the runtime library. If omitted, the path to the runtime library in the Tridash installation is used.

module-path
Path to the compiled Tridash module. If omitted, the path to the output file is used.

stack-size
The amount of space to reserve for the GC root set stack. The default stack size is 64 KB.

Caution
The root set stack does not expand after the space is reserved. If more elements are pushed onto it than there
is space, a memory access out of bounds exception will be thrown by the WebAssembly runtime.

Tridash 0.10 Reference Manual 72 / 78

9 Index

_
!

Core Module
Macro, 36

!!
Core Module

Meta-Node, 36
!-

Core Module
Meta-Node, 36

!=
Core Module

Meta-Node, 40
’

Core Module
Macro, 32

*
Core Module

Meta-Node, 38
+

Core Module
Meta-Node, 37

-
Core Module

Meta-Node, 38
->

Core Module
Macro, 33

Special Operator
Bindings, 6

.
Special Operator

Subnodes, 15
..

Core Module
Macro, 35

Special Operator
Outer Node References, 22

/
Core Module

Meta-Node, 38
/attribute

Special Operator
Attributes, 14

/context
Special Operator

Contexts, 11
/export

Special Operator
Modules, 30

/external
Special Operator

External Meta-Nodes, 23

/import
Special Operator

Modules, 29
/in

Special Operator
Modules, 30

/module
Special Operator

Modules, 27
/operator

Special Operators
Infix Operators, 32

/quote
Special Operator

Literal Symbols, 25
/state

Special Operator
Node States, 15

/use
Special Operator

Modules, 27
/use-as

Special Operator
Modules, 28

:
Core Module

Macro, 34
Special Operator

Meta-Node Definition, 18
::

Core Module
Macro, 34

<
Core Module

Meta-Node, 39
<-

Core Module
Macro, 33

<=
Core Module

Meta-Node, 39
=

Core Module
Meta-Node, 40

>
Core Module

Meta-Node, 39
>=

Core Module
Meta-Node, 39

?
Core Module

Meta-Node, 35

Tridash 0.10 Reference Manual 73 / 78

@
Core Module

Macro, 34
%

Core Module
Meta-Node, 38

&
Core Module

Macro, 33
Special Operator

Node References, 25

A
Accessing Node Values

Foreign Function Interface, 59
and

Core Module
Meta-Node, 40

append
Core Module

Meta-Node, 47
apply

Core Module
Meta-Node, 51

Arithmetic
Core Module, 37

Arity-Error
Core Module

Failure Type, 37
Node, 37

Arity-Error!
Core Module

Node, 37
Atoms

Syntax
Nodes, 1

Attribute
Coalescing, 57
Instance as Target, 26
Macro Nodes, 24
Pattern Matching, 53

Attributes, 14
Nodes, 14

B
Bind Declarations

Nodes
Bindings, 6

Bindings, 6–10, 12, 15
Core Module

Macros, 33
Nodes, 5

Builtin Failure Types
Core Module

Failures, 37
JavaScript Backend

Foreign Function Interface, 61

WebAssembly Backend
Foreign Function Interface, 65

C
c

Core Module
Macro, 33

case
Core Module

Macro, 42
catch

Core Module
Meta-Node, 36

char?
Core Module

Meta-Node, 45
coalescable

Attribute
Coalescing, 57

Coalescing, 57
Optimizations, 57

combine-conditions
Core Module

Meta-Node, 55
Comments

Syntax, 1
Comparison

Core Module, 39
Conditional Bindings

Nodes
Bindings, 12

conditionalize-bindings
Core Module

Meta-Node, 55
cons

Core Module
Meta-Node, 45

cons?
Core Module

Meta-Node, 46
Constant Patterns

Core Module
Pattern Matching, 53

Contexts, 11
Nodes

Bindings, 8
core

module
Standard Library, 32

Core Module, 37, 39, 40, 42, 43, 45, 49, 51, 52, 56
Failure Type, 37, 46, 56
Failures, 37
Macro, 32–36, 42
Macros, 32–34
Meta-Node, 35–51, 54–56
Node, 37, 42, 43, 46, 56
Pattern Matching, 52–54

Tridash 0.10 Reference Manual 74 / 78

Standard Library, 32
Utilities, 35

D
Decimal Syntax

Syntax
Reals, 4

Definitions
Core Module

Macros, 34
Dependency

Nodes, 5
Dictionaries

Value Type, 15
Direct References

Modules, 30

E
Empty

Core Module
Failure Type, 46
Node, 46

Empty!
Core Module

Node, 46
Escape Sequences

Syntax
Strings, 4

Evaluation
Nodes, 8

every?
Core Module

Meta-Node, 49
Explicit Contexts

Nodes
Contexts, 11

Exponent Syntax
Syntax

Reals, 4
Exporting Nodes

Modules, 30
External Functions

Foreign Function Interface, 59
JavaScript Backend

Foreign Function Interface, 62
WebAssembly Backend

Foreign Function Interface, 67
External Meta-Nodes, 23

Meta-Nodes, 23

F
fail

Core Module
Meta-Node, 35

fail-match
Core Module

Meta-Node, 56

fail-type
Core Module

Meta-Node, 35
fail-type?

Core Module
Meta-Node, 36

fails?
Core Module

Meta-Node, 35
Failure Type, 37, 46, 56

Failures
Value Type, 13

Failure Values
JavaScript Backend

Foreign Function Interface, 60
Failures, 37

Core Module
Utilities, 35

Value Type, 11, 13
False

Core Module
Node, 43

filter
Core Module

Meta-Node, 48
find-node

Core Module
Meta-Node, 51

foldl
Core Module

Meta-Node, 48
foldl’

Core Module
Meta-Node, 47

foldr
Core Module

Meta-Node, 48
Foreign Function Interface, 58–68
format

Core Module
Meta-Node, 50

Functions
Meta-Nodes

Semantics, 17
Functor Patterns

Core Module
Pattern Matching, 52

Functors, 2
Syntax

Nodes, 2

G
Garbage Collection

WebAssembly Backend
Foreign Function Interface, 66

get-attribute
Core Module

Tridash 0.10 Reference Manual 75 / 78

Meta-Node, 51
get-matcher

Core Module
Meta-Node, 55

Grammar
Syntax, 1

H
head

Core Module
Meta-Node, 46

Higher-Order Meta-Nodes
Meta-Nodes, 24

I
Identifiers

Syntax
Nodes, 1

if
Core Module

Meta-Node, 42
Importing Nodes

Modules, 29
Index-Out-Bounds

Core Module
Failure Type, 37
Node, 37

Index-Out-Bounds!
Core Module

Node, 37
inf?

Core Module
Meta-Node, 45

Infix Operators, 2, 32
Syntax

Functors, 2
Initial Values

Nodes
Bindings, 10

Input Nodes
Nodes, 13

Instance as Target, 26
Meta-Nodes, 26

int
Core Module

Meta-Node, 43
int?

Core Module
Meta-Node, 44

Integers
Syntax

Numbers, 3
Introspection Utilities

Core Module, 51
Invalid-Integer

Core Module
Failure Type, 37

Node, 37
Invalid-Integer!

Core Module
Node, 37

Invalid-Real
Core Module

Failure Type, 37
Node, 37

Invalid-Real!
Core Module

Node, 37

J
JavaScript Backend

Foreign Function Interface, 60–63

L
Lazy Evaluation

JavaScript Backend
Foreign Function Interface, 61

WebAssembly Backend
Foreign Function Interface, 66

list
Core Module

Meta-Node, 46
list!

Core Module
Meta-Node, 47

list*
Core Module

Meta-Node, 47
list->string

Core Module
Meta-Node, 50

Lists
Core Module, 45

Literal Bindings
Nodes

Bindings, 10
Literal Symbols, 25

Macro-Nodes, 25
Literals, 3, 4

Core Module
Macros, 32

Syntax, 3
Local Nodes

Meta-Nodes
Meta-Node Definition, 20

Logical Operators
Core Module, 40

M
Macro, 32–36, 42
macro

Attribute
Macro Nodes, 24

Macro Nodes, 24, 25

Tridash 0.10 Reference Manual 76 / 78

Meta-Nodes, 24
Macro-Nodes, 25
Macros, 32–34
make-match-bind

Core Module
Meta-Node, 56

make-pattern
Core Module

Meta-Node, 55
make-pattern-declarations

Core Module
Meta-Node, 56

map
Core Module

Meta-Node, 48
Marshaller

WebAssembly Backend
Foreign Function Interface, 65

Match-Fail
Core Module

Failure Type, 56
Node, 56

Match-Fail!
Core Module

Node, 56
matcher

Attribute
Pattern Matching, 53

Memory
WebAssembly Backend

Foreign Function Interface, 64
Meta-Node, 35–51, 54–56
Meta-Node Definition, 18–22

Meta-Nodes, 18
Meta-Node References

Meta-Nodes, 24
Meta-Nodes, 18, 22–24, 26

Macro Nodes, 24
Meta-Node Definition, 19–22
Nodes

Semantics, 17
Semantics, 17

module
Standard Library, 32

Module Creation
Modules, 27

Module Pseudo-Nodes
Modules, 27

Modules, 27–30
Infix Operators, 32
Operators, 31

N
NaN?

Core Module
Meta-Node, 45

Nested Meta-Nodes

Meta-Nodes
Meta-Node Definition, 22

Nested Patterns
Core Module

Pattern Matching, 52
No-Value

Core Module
Failure Type, 37
Node, 37

No-Value!
Core Module

Node, 37
Node, 37, 42, 43, 46, 56
Node Creation

Nodes, 5
Node Expression Representation

Meta-Nodes
Macro Nodes, 24

Node Lists
Syntax

Nodes, 3
Node References, 25

Macro Nodes, 25
Node States, 15

Nodes
Bindings, 15

node?
Core Module

Meta-Node, 51
Nodes, 1–3, 5, 8, 13–15

Bindings, 6–10, 12, 15
Contexts, 11
Semantics, 5, 17
Syntax, 1

not
Core Module

Meta-Node, 41
not-any?

Core Module
Meta-Node, 49

not-every?
Core Module

Meta-Node, 49
nth

Core Module
Meta-Node, 47

Numbers, 3, 4
Syntax

Literals, 3

O
Observer

Nodes, 5
Operator Associativity

Syntax
Infix Operators, 2

Operator Precedence

Tridash 0.10 Reference Manual 77 / 78

Syntax
Infix Operators, 2

Operator Table
Core Module, 56
Modules

Operators, 31
Operators, 31
Optimizations, 57
Optional Arguments

Meta-Nodes
Meta-Node Definition, 19

or
Core Module

Meta-Node, 41
Outer Node References, 22

Meta-Nodes, 22

P
Pattern

Core Module
Meta-Node, 54

Pattern Matching, 52–54
Core Module, 52

Pattern Matching Utilities
Core Module

Pattern Matching, 54
Pattern Object

Core Module
Pattern Matching, 53

R
real

Core Module
Meta-Node, 43

real?
Core Module

Meta-Node, 44
Reals, 4

Syntax
Numbers, 4

Recursive Meta-Nodes
Meta-Nodes, 22

Registering Infix Operators
Modules

Infix Operators, 32
Rest Arguments

Meta-Nodes
Meta-Node Definition, 19

Runtime Module Object
JavaScript Backend

Foreign Function Interface, 63
WebAssembly Backend

Foreign Function Interface, 68
Runtime Module Objects

Foreign Function Interface, 59
Runtime Node Objects

Foreign Function Interface, 59

S
Selection Operators

Core Module, 42
Self Node

Meta-Nodes
Meta-Node Definition, 21

Semantics, 5, 17
some?

Core Module
Meta-Node, 49

Special Operator
Attributes, 14
Bindings, 6
Contexts, 11
External Meta-Nodes, 23
Literal Symbols, 25
Meta-Node Definition, 18
Modules, 27–30
Node References, 25
Node States, 15
Outer Node References, 22
Subnodes, 15

Special Operators
Infix Operators, 32

Stack Usage
Meta-Nodes, 22

Standard Library, 32
string

Core Module
Meta-Node, 43

string->list
Core Module

Meta-Node, 50
string-at

Core Module
Meta-Node, 49

string-concat
Core Module

Meta-Node, 50
string?

Core Module
Meta-Node, 45

Strings, 4
Core Module, 49
Syntax

Literals, 4
Subnodes, 15

Nodes, 15
symbol?

Core Module
Meta-Node, 45

Symbols
Syntax

Nodes, 1
Syntax, 1, 3

Functors, 2
Infix Operators, 2

Tridash 0.10 Reference Manual 78 / 78

Literals, 3, 4
Nodes, 1–3
Numbers, 3, 4
Reals, 4
Strings, 4

T
tail

Core Module
Meta-Node, 46

Target Node Transform
Instance as Target

Meta-Nodes, 26
target-node

Attribute
Instance as Target, 26

target-transform
Attribute

Instance as Target, 26
to-int

Core Module
Meta-Node, 44

to-real
Core Module

Meta-Node, 44
to-string

Core Module
Meta-Node, 44

True
Core Module

Node, 42
Two-Way Bindings

Nodes
Bindings, 9

Type Checks
Core Module, 43

Type Conversions
Core Module, 43

Type-Error
Core Module

Failure Type, 37
Node, 37

Type-Error!
Core Module

Node, 37

U
Utilities, 35

V
Value Conversions

WebAssembly Backend
Foreign Function Interface, 65

Value Propagation
Nodes

Bindings, 7
Value Type, 11, 13, 15

Value Types
JavaScript Backend

Foreign Function Interface, 60
WebAssembly Backend

Foreign Function Interface, 64

W
WebAssembly Backend

Foreign Function Interface, 64–68

	Syntax
	Atom Nodes
	Functors
	Node Lists
	Literals
	Numbers
	Strings

	Nodes
	Glossary
	Declaring Nodes
	Declaring Bindings
	Propagation of Changes
	Evaluation Strategy
	Contexts
	Two-Way Bindings
	Cyclic Bindings
	Literal Bindings
	Explicit Contexts

	Failures
	Conditional Bindings
	Explicit Failures and Failure Types
	Conditionally Active Bindings based on Failure Type

	Input Nodes
	Attributes
	Subnodes
	Node States

	Meta-Nodes
	Defining Meta-Nodes
	Optional Arguments
	Rest Arguments
	Local Nodes
	Self Node
	Nested Meta-Nodes

	Recursive Meta-Nodes
	Outer Node References
	External Meta-Nodes
	Higher-Order Meta-Nodes
	Macro Nodes
	Literal Symbols
	Node References

	Instances as Targets
	Target Node Transforms

	Modules
	Creating Modules
	Referencing Nodes in Different Modules
	Module Pseudo-Nodes
	Importing Nodes
	Direct References

	Operator Table
	Registering Infix Operators

	Core Module
	Literals
	Macro-Node: '(x)
	Macro-Node: c(x)
	Macro-Node: &(node)

	Bindings
	Macro-Node: ->(source, target)
	Macro-Node: <-(target, source)
	Macro-Node: @(node, context : '(default))
	Macro-Node: ::(node, state)

	Meta-Node Definitions
	Macro-Node: :(id(args...), body)
	Macro-Node: ..(node)

	Failures
	Meta-Node: fail(:(type))
	Meta-Node: fail-type(x)
	Meta-Node: fails?(x)
	Meta-Node: ?(x)
	Meta-Node: fail-type?(x, type)
	Meta-Node: !!(x)
	Meta-Node: !-(test, value)
	Macro-Node: !(functor)
	Meta-Node: catch(try, catch, :(test))

	Builtin Failure Types
	Failure Type Node: No-Value
	Failure Type Node: Type-Error
	Failure Type Node: Index-Out-Bounds
	Failure Type Node: Invalid-Integer
	Failure Type Node: Invalid-Real
	Failure Type Node: Arity-Error

	Arithmetic
	Meta-Node: +(x, y)
	Meta-Node: -(x, :(y))
	Meta-Node: *(x, y)
	Meta-Node: /(x, y)
	Meta-Node: %(x, y)

	Comparison
	Meta-Node: <(x, y)
	Meta-Node: <=(x, y)
	Meta-Node: >(x, y)
	Meta-Node: >=(x, y)
	Meta-Node: =(a, b)
	Meta-Node: !=(a, b)

	Logical Operators
	Meta-Node: and(x, y)
	Meta-Node: or(x, y)
	Meta-Node: not(x)

	Selection Operators
	Meta-Node: if(condition, true-value, :(false-value))
	Macro-Node: case(..(clauses))
	Node True
	Node False

	Types
	Meta-Node: int(x)
	Meta-Node: real(x)
	Meta-Node: string(x)
	Meta-Node: to-int(x)
	Meta-Node: to-real(x)
	Meta-Node: to-string(x)
	Meta-Node: int?(x)
	Meta-Node: real?(x)
	Meta-Node: string?(x)
	Meta-Node: symbol?
	Meta-Node: char?
	Meta-Node: inf?(x)
	Meta-Node: NaN?(x)

	Lists
	Meta-Node: cons(head, tail)
	Meta-Node: head(list)
	Meta-Node: tail(list)
	Meta-Node: cons?(thing)
	Node: Empty
	Node: Empty!
	Meta-Node: list(..(xs))
	Meta-Node: list*(..(xs))
	Meta-Node: list!(..(xs))
	Meta-Node: nth(list, n)
	Meta-Node: append(list1, list2)
	Meta-Node: foldl'(x, f, list)
	Meta-Node: foldl(f, list)
	Meta-Node: foldr(f, list, :(x))
	Meta-Node: map(f, list)
	Meta-Node: filter(f, list)
	Meta-Node: every?(f, list)
	Meta-Node: some?(f, list)
	Meta-Node: not-any?(f, list)
	Meta-Node: not-every?(f, list)

	Strings
	Meta-Node: string-at(string, index)
	Meta-Node: string-concat(string, str1, str2)
	Meta-Node: string->list(string)
	Meta-Node: list->string(list)
	Meta-Node: format(string, ..(args))

	Dictionaries
	Meta-Node: member(dict, key)

	Functions
	Meta-Node: apply(f, ..(xs))

	Introspection
	Meta-Node: node?(thing)
	Meta-Node: find-node(node, :(module))
	Meta-Node: get-attribute(node, attribute)

	Pattern Matching
	Nested Patterns
	Constant Patterns
	Matchers

	Module: core/patterns
	Meta-Node: Pattern(condition, :(binding))
	Meta-Node: get-matcher(node)
	Meta-Node: make-pattern(place, pattern)
	Meta-Node: combine-conditions(c1, c2)
	Meta-Node: conditionalize-bindings(condition, bindings)
	Failure Type Node: Match-Fail
	Meta-Node: fail-match(condition)
	Meta-Node: make-match-bind(src, target)
	Meta-Node: make-pattern-declarations(pattern)

	Operator Table

	Optimizations
	Coalescing

	Interfacing with Other Languages
	Calling External Functions
	Accessing and Setting Node Values
	Runtime Module Objects
	Runtime Node Objects

	JavaScript Backend
	Value Types
	Failure Values
	Builtin Failure Types
	Lazy Evaluation
	Linking Meta-Nodes to External Functions
	Runtime Module Object

	WebAssembly Backend
	Memory
	Value Types
	Builtin Failure Types
	Marshaller
	Lazy Evaluation and Garbage Collection
	Linking Meta-Nodes to External Functions
	Runtime Module Object

	Compiler Options
	Compilation Targets
	Output Options
	JavaScript Backend
	WebAssembly Backend

	Index

